DOI QR코드

DOI QR Code

CRITICAL BLOW-UP AND EXTINCTION EXPONENTS FOR NON-NEWTON POLYTROPIC FILTRATION EQUATION WITH SOURCE

  • Zhou, Jun ;
  • Mu, Chunlai
  • Published : 2009.11.30

Abstract

This paper deals with the critical blow-up and extinction exponents for the non-Newton polytropic filtration equation. We reveals a fact that the equation admits two critical exponents $q_1,\;q_2\;{\in}\;(0,+{\infty})$) with $q_1\;{<}\;q_2$. In other words, when q belongs to different intervals (0, $q_1),\;(q_1,\;q_2),\;(q_2,+{\infty}$), the solution possesses complete different properties. More precisely speaking, as far as the blow-up exponent is concerned, the global existence case consists of the interval (0, $q_2$]. However, when q ${\in}\;(q_2,+{\infty}$), there exist both global solutions and blow-up solutions. As for the extinction exponent, the extinction case happens to the interval ($q_1,+{\infty}$), while for q ${\in}\;(0,\;q_1$), there exists a non-extinction bounded solution for any nonnegative initial datum. Moreover, when the critical case q = $q_1$ is concerned, the other parameter ${\lambda}$ will play an important role. In other words, when $\lambda$ belongs to different interval (0, ${\lambda}_1$) or (${\lambda}_1$,+${\infty}$), where ${\lambda}_1$ is the first eigenvalue of p-Laplacian equation with zero boundary value condition, the solution has completely different properties.

Keywords

non-Newtonian polytropic equation;critical blow-up exponent;critical extinction exponent

References

  1. K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), no. 1, 85-126 https://doi.org/10.1006/jmaa.1999.6663
  2. E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993
  3. H. Fujita, On the blowing up of solutions to the cauchy problems for ut = ${\Delta}u\;+\;u^{1+{\alpha}}$, Journal of the Faculty of Science University of Tokyo Section 1Mathematics Astronomy Physics Chemistry 13 (1996), 109-124
  4. C. H. Jin and J. X. Yin, Critical exponents and non-extinction for a fast diffusive polytropic filtration equation with nonlinear boundary sources, Nonlinear Anal. 67 (2007), no. 7, 2217-2223 https://doi.org/10.1016/j.na.2006.08.037
  5. A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Uspekhi Mat. Nauk 42 (1987), no. 2, 135-176
  6. Y. C. Kwong, Boundary behavior of the fast diffusion equation, Trans. Amer. Math. Soc. 322 (1990), no. 1, 263-283 https://doi.org/10.2307/2001531
  7. J. L. V´azquez, The Porous Medium Equations: Mathematical Theory, Oxford Univ. Press, 2007
  8. Z. J. Wang, J. X. Yin, and C. P. Wang, Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition, Appl. Math. Lett. 20 (2007), no. 2, 142-147 https://doi.org/10.1016/j.aml.2006.03.008
  9. M. Winkler, A strongly degenerate diffusion equation with strong absorption, Math. Nachr. 277 (2004), 83–101 https://doi.org/10.1002/mana.200310221
  10. Z. Q. Wu, J. N. Zhao, J. X. Yin, and H. L. Li, Nonlinear Diffusion Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 2001
  11. H. J. Yuan, Extinction and positivity for the evolution p-Laplacian equation, J. Math. Anal. Appl. 196 (1995), no. 2, 754-763 https://doi.org/10.1006/jmaa.1995.1439
  12. H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990), no. 2, 262-288 https://doi.org/10.1137/1032046
  13. H. J. Yuan, S. Z. Lian, W. J. Gao, X. J. Xu, and C. L. Cao, Extinction and positivity for the evolution p-Laplace equation in RN$R^N$, Nonlinear Anal. 60 (2005), no. 6, 1085-1091 https://doi.org/10.1016/j.na.2004.10.009

Cited by

  1. Extinction and non-extinction for a polytropic filtration system with non-linear sources vol.94, pp.6, 2015, https://doi.org/10.1080/00036811.2014.924108
  2. Critical extinction exponent for a doubly degenerate non-divergent parabolic equation with a gradient source 2017, https://doi.org/10.1080/00036811.2017.1359557
  3. Extinction behavior of solutions for a quasilinear parabolic system with nonlocal sources vol.259, 2015, https://doi.org/10.1016/j.amc.2015.03.002
  4. Extinction and decay estimates of solutions for a polytropic filtration equation with the nonlocal source and interior absorption vol.36, pp.6, 2013, https://doi.org/10.1002/mma.2630
  5. Critical extinction exponent for a quasilinear parabolic equation with a gradient source vol.48, pp.1-2, 2015, https://doi.org/10.1007/s12190-014-0805-2
  6. Extinction behavior of solutions for the -Laplacian equations with nonlocal sources vol.13, pp.4, 2012, https://doi.org/10.1016/j.nonrwa.2011.12.008
  7. Critical extinction exponents for a polytropic filtration equation with absorption and source vol.36, pp.12, 2013, https://doi.org/10.1002/mma.2708
  8. Extinction and decay estimates of solutions for a porous medium equation with nonlocal source and strong absorption vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-2770-2013-24
  9. Extinction and positivity for the evolution p-Laplacian equations with absorption on networks vol.69, pp.3, 2015, https://doi.org/10.1016/j.camwa.2014.12.009
  10. Extinction and non-extinction for a polytropic filtration equation with absorption and source vol.391, pp.2, 2012, https://doi.org/10.1016/j.jmaa.2012.02.056
  11. Extinction properties of solutions for a class of fast diffusive -Laplacian equations vol.74, pp.13, 2011, https://doi.org/10.1016/j.na.2011.04.016
  12. Extinction and non-extinction for a polytropic filtration equation with a nonlocal source vol.92, pp.3, 2013, https://doi.org/10.1080/00036811.2011.632766
  13. Global existence and blow-up solution for doubly degenerate parabolic system with nonlocal sources and inner absorptions vol.37, pp.4, 2014, https://doi.org/10.1002/mma.2813
  14. Qualitative Properties of Nonnegative Solutions for a Doubly Nonlinear Problem with Variable Exponents vol.2018, pp.1687-0409, 2018, https://doi.org/10.1155/2018/3821217