DOI QR코드

DOI QR Code

SENSITIVITY ANALYSIS FOR A SYSTEM OF GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS WITH (A, η)-ACCRETIVE MAPPINGS IN BANACH SPACES

  • 발행 : 2009.11.30

초록

In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of parametric generalized nonlinear mixed quasi-variational inclusions with (A, ${\eta$)-accretive mappings in quniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

참고문헌

  1. R. P. Agarwal, N. J. Huang, and M. Y. Tan, Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions, Appl. Math. Lett. 17 (2004), 345-352 https://doi.org/10.1016/S0893-9659(04)90073-0
  2. S. Dafermos, Sensitivity analysis in variational inequalities, Math. Operat. Res. 13 (1988), 421-434 https://doi.org/10.1287/moor.13.3.421
  3. Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), 795-803 https://doi.org/10.1016/S0096-3003(03)00275-3
  4. Y. P. Fang and N. J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), 647-653 https://doi.org/10.1016/S0893-9659(04)90099-7
  5. H. Y. Lan, Y. J. Cho, and R. U. Verma, On nonlinear relaxed cocoercive variational inclusions involving (A, ${\eta}$)-accretive mappings in Banach spaces, Comput. Math. Appl. 51 (2006), 1529-1538 https://doi.org/10.1016/j.camwa.2005.11.036
  6. R. N. Mukherjee and H. L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992), 299-304 https://doi.org/10.1016/0022-247X(92)90207-T
  7. M. A. Noor, Generalized algorithm and sensitivity analysis for variational inequalities, J. Appl. Math. Stoch. Anal. 5 (1992), 29-42 https://doi.org/10.1155/S1048953392000030
  8. Y. H. Pan, Sensitivity analysis for general quasi-variational inequalities, J. Sichuan Normal Univ. 19 (1996), 56-59
  9. J. W. Peng, On a new system of generalized mixed quasi-variational-like inclusions with (H, ${\eta}$)-accretive operators in real q-uniformly smooth Banach spaces, Nonlinear Anal. 68 (2008), 981-993 https://doi.org/10.1016/j.na.2006.11.054
  10. J. W. Peng and D. L. Zhu, Three-step iterative algorithm for a system of set-valued variational inclusions with (H, ${\eta}$)-monotone operators, Nonlinear Anal. 68 (2008), 139-153 https://doi.org/10.1016/j.na.2006.10.037
  11. R. U. Verma, A-monotonicity and applications to nonlinear variational inclusions, J. Appl. Math. Stoch. Anal. 17 (2004), no. 2, 193-195
  12. H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138 https://doi.org/10.1016/0362-546X(91)90200-K
  13. N. D. Yen, Lipschitz continuity of solution of variational inequalities with a parametric polyhedral constraint, Math. Operat. Res. 20 (1995), 607-708 https://doi.org/10.1287/moor.20.3.695
  14. D. Zeidler, Nonlinear Functional Analysis and its Applications II: Monotone Operators, Springer-Verlag, Berlin, 1985