Microbial Community Analysis using RDP II (Ribosomal Database Project II):Methods, Tools and New Advances

Cardenas, Erick;Cole, James R.;Tiedje, James M.;Park, Joon-Hong

  • Published : 2009.03.31


Microorganisms play an important role in the geochemical cycles, industry, environmental cleanup, and biotechnology among other fields. Given the high microbial diversity, identification of the microorganism is essential in understanding and managing the processes. One of the most popular and powerful method for microbial identification is comparative 16S rRNA gene analysis. Due to the highly conserved nature of this essential gene, sequencing and later comparison of it against known rRNA databases can provide assignment of the bacteria into the taxonomy, and the identity of its closest relatives. Isolation and sequencing of 16S rRNA genes directly from natural environments (either from DNA or RNA) can also be used to study the structure of the whole microbial community. Nowadays, novel sequencing technologies with massive outputs are giving researchers worldwide the chance to study the microbial world with a depth that was previously too expensive to achieve. In this article we describe commonly used research approaches for the study of individual microorganisms and microbial communities using the tools provided by Ribosomal Database Project website.


Microbial community analysis;Ribosomal RNA;Microbial diversity


  1. Dykhuizen, D. E., “Santa Rosalia revisited: why are there so many species of bacteria?” Antonie Van Leeuwenhoek, 73, 25-33 (1998)
  2. Skinner, F. A., Jones, P. C., and Mollison, J. E., “A comparison of a direct- and a plate counting technique for the quantitative estimation of soil micro-organisms,” J. Gen Microbiol., 6, 261-271 (1952)
  3. Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M., and Sait, M., “Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia,” Appl. Environ. Microbiol., 68, 2391-2396 (2002)
  4. Miller, S. R., Augustine, S., Olson, T. L., Blankenship, R. E., Selker, and J., Wood, A. M., “Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene,” Proc. Natl. Acad. Sci. USA, 102, 850-855 (2005)
  5. Persoh, D., Theuerl, S., Buscot, F., and Rambold, G., “Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil,” J. Microbiol. Methods., 75, 19-24 (2008)
  6. Sanger, F., Nicklen, S., and Coulson, A. R., “DNA sequencing with chain-terminating inhibitors,” Proc. Natl. Acad. Sci. USA, 74, 5463-5467 (1977)
  7. Maxam, A. M., and Gilbert, W., “A new method for sequencing DNA,” Proc. Natl. Acad. Sci. USA, 74, 560-564 (1977)
  8. Nyren, P., Pettersson, B., and Uhlen, M., “Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay,” Anal. Biochem., 208, 171-175 (1993)
  9. Liu, Z., DeSantis, T. Z., Andersen, G. L., and Knight, R., “Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers,” Nucleic. Acids. Res., 36, e120 (2008)
  10. Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M., and Herndl, G. J., “Microbial diversity in the deep sea and the underexplored “rare biosphere”,” Proc. Natl. Acad. Sci. USA, 103, 12115-12120 (2006)
  11. Huber, J. A., Welch, D. B. M., Morrison, H. G., Huse, S. M., Neal, P. R., Butterfield, D. A., and Sogin, M. L., “Microbial population structures in the deep marine biosphere,” Science, 318, 97-100 (2007)
  12. Sorek, R., Zhu, Y., Creevey, C. J., Francino, M. P., Bork, P., and Rubin, E. M., “Genome-wide experimental determination of barriers to horizontal gene transfer,” Science, 318, 1449-1452 (2007)
  13. Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J., and Weightman, A. J., “New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras,” Appl. Environ. Microbiol., 72, 5734-5741 (2006)
  14. Huber, T., Faulkner, G., and Hugenholtz, P., “Bellerophon: a program to detect chimeric sequences in multiple sequence alignments,” Bioinformatics, 20, 2317-2319 (2004)
  15. Cole, J., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M., and Tiedje, J. M., “The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis,” Nucleic. Acids. Res., 33, D294-296 (2005)
  16. Allen, J. P., Atekwana, E. A., Duris, J. W., Werkema, D. D., and Rossbach, S., “The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures,” Appl. Environ. Microbiol., 73, 2860-2870 (2007)
  17. Kong, Y., Xia, Y., Nielsen, J. L., and Nielsen, P. H., “Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant,” Microbiology, 153, 4061-4073 (2007)
  18. Bedard, D. L., Bailey, J. J., Reiss, B. L., and Jerzak, G. V., “Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate aroclor 1260,” Appl. Environ. Microbiol., 72, 2460-2470 (2006)
  19. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic. Acids. Res., 25, 3389-3402 (1997)
  20. Moss, E., Microbial community structure in a trichloroethylene aquifer during Toluene stimulated bioremediation, Ph.D. dissertation, Michigan State University (2004)
  21. Schloss, P. D., and Handelsman, “J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness,” Appl. Environ. Microbiol., 71, 1501-1506 (2005)
  22. Rossello-Mora, R., and Amann, R., “The species concept for prokaryotes,” FEMS. Microbiol. Rev., 25, 39-67 (2001)
  23. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., and Tiedje, J. M., “DNA-DNA hybridization values and their relationship to whole-genome sequence similarities,” Int. J. Syst. Evol. Microbiol., 57, 81-91(2007)
  24. Sorensen, T., “A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons,” Biol. Skr., 5, 1-34 (1984)
  25. Jaccard, P., “Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Societe Vaudoise des Sciences,” Naturelles, 37, 547-579 (1901)
  26. Schloss, P. D., Larget, B. R., and Handelsman, J., “Integration of microbial ecology and statistics: a test to compare gene libraries,” Appl. Environ. Microbiol., 70, 5485-5492 (2004)
  27. Lozupone, C., and Knight, R., “UniFrac: a new phylogenetic method for comparing microbial communities,” Appl. Environ. Microbiol., 71, 8228-8235 (2005)
  28. Lozupone, C., Hamady, M., and Knight, R., “Uni Fracan online tool for comparing microbial community diversity in a phylogenetic context,” BMC Bioinformatics, 7, 371 (2006)
  29. Martin, A. P., “Phylogenetic approaches for describing and comparing the diversity of microbial communities,” Appl. Environ. Microbiol., 68, 3673-3682 (2002)
  30. Schloss, P. D., “Evaluating different approaches that test whether microbial communities have the same structure,” ISME J., 2, 265-275 (2008)
  31. Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Marsh, T., Garrity, G. M., and Tiedje, J. M., “The Ribosomal Database Project: improved alignments and new tools for rRNA analysis,” Nucl. Acids. Res., 37, D141-145 (2009)
  32. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G., “Clustal W and Clustal X version 2.0,” Bioinformatics, 23, 2947-2948 (2007)
  33. Edgar, R. C., “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic. Acids. Res., 32, 1792-1797 (2004)
  34. Iwai, S., Chai, B., Sul, W. J., Cole, J. R., Hashsham, S. A., and Tiedje, J. M., “Exploring environmental biphenyl dioxygenase genes by clone libraries and pyrosequencing,” Twelveth International Symposium on Microbial Ecology (ISME-12), Cairns, Australia (2008)
  35. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L. I., Jarvie, T. P., Jirage, K. B., Kim, J. B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F., and Rothberg, J. M., “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, 437, 376-380 (2005)蠄⨀렄⨀᠅⨀怄⨀逄⨀쀄⨀ ⨀戄⨀鈄⨀숄⨀∅⨀胀���⨀Ȁ
  36. Stackebrandt, E., and Ebers, J., “Taxonomic parameters revisited: tarnished gold standards,” MICROBIOLOGY TODAY, 33, 152-155 (2006)
  37. Singleton, D. R., Furlong, M. A., Rathbun, S. L., and Whitman, W. B., “Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples,” Appl. Environ. Microbiol., 67, 4374-4376 (2001)
  38. Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R., “Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy,” Appl. Environ. Microbiol., 73, 5261-5267 (2007)
  39. Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J., and Weightman, A. J., “At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies,” Appl. Environ. Microbiol., 71, 7724-7736 (2005)
  40. Shiratori, H., Ikeno, H., Ayame, S., Kataoka, N., Miya, A., Hosono, K., Beppu, T., and Ueda, K., “Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor,” Appl. Environ. Microbiol., 72, 3702-3709 (2006)
  41. Schloss, P. D., and Handelsman, J., “Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures,” Appl. Environ. Microbiol., 72, 6773-6779 (2006)
  42. Konstantinidis, K. T., and Tiedje, J. M., “Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead,” Curr. Opin. Microbiol., 10, 504-509 (2007)
  43. Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., Wang, M. D., Zhang, K., Mitra, R. D., and Church, G. M., “Accurate multiplex polony sequencing of an evolved bacterial genome,” Science, 309, 1728-1732 (2005)
  44. Kanagawa, T., “Bias and artifacts in multitemplate polymerase chain reactions (PCR),” J. Biosci. Bioeng., 96, 317-323 (2003)

Cited by

  1. Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities vol.22, pp.4, 2011,
  2. Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis vol.48, pp.4, 2015,
  3. Novel Biphenyl-Oxidizing Bacteria and Dioxygenase Genes from a Korean Tidal Mudflat vol.77, pp.11, 2011,
  4. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing vol.87, pp.6, 2010,
  5. genus as a toolkit to identify closely related bacterial species in complex environments vol.6, pp.2167-8359, 2019,