Design of an Endoscopic Microscope Objective Composed of GRIN(Gradient-Index) Lens with Scanning Devices

GRIN 렌즈로 구성된 주사방식의 내시현미경 대물렌즈의 설계

  • Kim, Keyong-Jeong (Department of Applied Optics and Electromagnetics, College of Natural Science, Hannam University) ;
  • Rim, Cheon-Seog (Department of Applied Optics and Electromagnetics, College of Natural Science, Hannam University)
  • 김경정 (한남대학교 광.전자물리학과) ;
  • 임천석 (한남대학교 광.전자물리학과)
  • Published : 2009.12.25


We present an attractive real time in-vivo endoscopic microscope with a resolution of submicron, in which two kinds of optical correcting plates are inserted to eliminate higher order spherical aberration and field curvature. And, since the conventional objective lens is replaced to GRIN lenses with diameter of 1 mm, the above endoscopic microscope can be effectively utilized to invade minimally for live animals.


  1. H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Exp. 15, 9113-9122 (2007)
  2. W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29, 2521-2523 (2004)
  3. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902-904 (2003)
  4. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” Journal of Neurophysiology 91, 1908-1912 (2004)
  5. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using oneand two-photon fluorescence microendoscopy,” Journal of Neurophysiology 92, 3121-3133 (2004)
  6. P. Kim, M. Puoris'haag, D. Cote, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomedical Optics 13, 010501 (2008)
  7. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nature Photonics 2, 39-43 (2008)
  8. M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” Journal of Microscopy 200, 68-74 (2000)
  9. C. Liang, K.-B. Sung, R. R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41, 4603-4610 (2002)
  10. K. Carlson, M. Chidley, K.-B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injectionmolded plastic miniature objective lens,” Appl. Opt. 44, 1792-1797 (2005)
  11. A. Kikuchi, “Objective system for endoscopes,” U. S. Patent 5,359,456 (1994)
  12. H. Miyano, “Endoscope objective lens,” U. S. Patent 7, 027,231 B2 (2006)
  13. C. S. Rim, “Design of an endoscope objective lens with a high numerical aperture and a minimally-invasive outer diameter,” J. Korean Phys. Soc. 51, 52-64 (2007)
  14. S. Y. Jang and C. S. Rim, “Design of an endoscopi microscope objective lens composed of flexible fiber bundle and gradient-index with a high resolution and a minimallyinvasive outer diameter,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 19, 87-94 (2008)
  15. W. J. Smith, Modern Optical Engineering (MacGraw-Hill, NY, USA, 2001), Chapter 10
  16. NSG America, Inc., “SELFOC(R) Imaging Lenses - Technical Charts,”
  17. GRINTECH, Inc., “GRIN Rod Lenses,” /datasheets/GRIN%20Rod%20Lenses.pdf
  18. Optical Research Associates, Inc., “CODE V version 10.0,”