AN EXTREMAL PROBLEM ON POTENTIALLY $K_{r,r} - ke$-GRAPHIC SEQUENCES

GANG CHEN AND JIAN-HUA YIN*

ABSTRACT. For $1 \leq k \leq r$, let $\sigma(K_{r,r} - ke, n)$ be the smallest even integer such that every n-term graphic sequence $\pi = (d_1, d_2, \ldots, d_n)$ with term sum $\sigma(\pi) = d_1 + d_2 + \cdots + d_n \geq \sigma(K_{r,r} - ke, n)$ has a realization G containing $K_{r,r} - ke$ as a subgraph, where $K_{r,r} - ke$ is the graph obtained from the $r \times r$ complete bipartite graph $K_{r,r}$ by deleting k edges which form a matching. In this paper, we determine $\sigma(K_{r,r} - ke, n)$ for even $r \geq 4$ and $n \geq 7r^2 + \frac{1}{2}r - 22$ and for odd $r \geq 5$ and $n \geq 7r^2 + 9r - 26$.

AMS Mathematics Subject Classification: 05C35.
Key words and phrases: Graph, degree sequence, potentially $K_{r,r} - ke$-graphic sequence.

1. Introduction

The set of all sequences $\pi = (d_1, d_2, \ldots, d_n)$ of nonnegative integers with $d_i \leq n-1$ for each i is denoted by NS_n. A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π. The set of all graphic non-increasing sequences in NS_n is denoted by GS_n. For a sequence $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$, denote $\sigma(\pi) = d_1 + d_2 + \cdots + d_n$. For given a graph H, a sequence $\pi \in GS_n$ is potentially H-graphic if there exists a realization of π containing H as a subgraph. Gould et al. [3] considered the following variation of the classical Turán-type extremal problems: for given a graph H, determine the smallest even integer $\sigma(H, n)$ such that every sequence $\pi \in GS_n$ with $\sigma(\pi) \geq \sigma(H, n)$ is potentially H-graphic. If $H = K_{r+1}$, the complete graph on $r+1$ vertices, this problem was considered by Erdős et al. [2] where they showed that $\sigma(K_3, n) = 2n$ for $n \geq 6$ and conjectured that $\sigma(K_{r+1}, n) = (r-1)(2n-r) + 2$ for sufficiently large n. Gould et al. [3] and Li et al. [5] independently proved it for $r = 3$. Recently, Li et al. [6,7] proved that the conjecture is true for $r = 4$ and $n \geq 10$ and for $r \geq 5$ and

Received January 5, 2008. Revised March 4, 2008. Accepted March 10, 2008. *Corresponding author. The research was partly supported by NNSF of China and NSF of Hainan Province (No. 807026).

© 2009 Korean SIGCAM and KSCAM .
n ≥ \binom{s}{2} + 3. For H = K_{r,s}, the r \times s complete bipartite graph, Gould et al. [3] determined \(\sigma(K_{2,2},n) \) for \(n \geq 4 \). Yin et al. [8] determined \(\sigma(K_{3,3},n) \) for \(n \geq 6 \) and \(\sigma(K_{4,4},n) \) for \(n \geq 8 \). Yin et al. [9] also determined \(\sigma(K_{r,r},n) \) for even \(r \geq 4 \) and \(n \geq 4r^2 - r - 6 \) and for odd \(r \geq 3 \) and \(n \geq 4r^2 + 3r - 8 \). Recently, Yin et al. [10,11] further determined \(\sigma(K_{r,s},n) \) for \(s \geq r \geq 1 \) and sufficiently large \(n \). The purpose of this paper is to determine \(\sigma(K_{r,r} - ke,n) \) for even \(r \geq 4 \) and \(n \geq 7r^2 + \frac{1}{2}r - 22 \) (Theorem 6) and for odd \(r \geq 5 \) and \(n \geq 7r^2 + 9r - 26 \) (Theorem 7), where \(1 \leq k \leq r \) and \(K_{r,r} - ke \) is the graph obtained from \(K_{r,r} \) by deleting \(k \) edges which form a matching.

2. Preliminaries

In order to prove our main results, we need the following known theorems.

Let \(\pi = (d_1, d_2, \ldots, d_n) \in NS_n \) be a non-increasing sequence. Denote \(f(\pi) = \max \{i \mid d_i \geq i\} \) and define an \(n \)-by-\(n \) matrix \(A = (a_{ij}) \) as follows: if \(d_i \geq i \), then
\[
a_{ij} = \begin{cases}
1 & \text{if } 1 \leq j \leq d_i + 1 \text{ and } j \neq i, \\
0 & \text{otherwise},
\end{cases}
\]
and if \(d_i < i \), then
\[
a_{ij} = \begin{cases}
1 & \text{if } 1 \leq j \leq d_i, \\
0 & \text{otherwise}.
\end{cases}
\]

\(f(\pi) \) and \(\bar{A} \) are called the trace and the left-most off-diagonal matrix of \(\pi \), respectively. The column sum vector of \(\bar{A} \), denoted by \(\bar{\pi} = (\bar{d}_1, \bar{d}_2, \ldots, \bar{d}_n) \), is called the corrected conjugate vector of \(\pi \). Clearly, the row sum vector of \(\bar{A} \) is \(\pi \) and \(\bar{\sigma}(\bar{\pi}) = \sigma(\pi) \).

Theorem 1. [1] Let \(\pi = (d_1, d_2, \ldots, d_n) \in NS_n \) be a non-increasing sequence with even \(\sigma(\pi) \). Then \(\pi \) is graphic if and only if \(d_1 + d_2 + \cdots + d_i \leq \bar{d}_1 + \bar{d}_2 + \cdots + \bar{d}_i \) for each \(i = 1, 2, \ldots, f(\pi) \).

For a non-increasing sequence \(\pi = (d_1, d_2, \ldots, d_n) \in NS_n \), let \(d'_1 \geq d'_2 \geq \cdots \geq d'_{n-1} \) be the rearrangement of \(d_1 - 1, d_2 - 1, \ldots, d_{n-1} - 1 \). Then \(\pi' = (d'_1, d'_2, \ldots, d'_{n-1}) \) is called the residual sequence of \(\pi \). It is easy to see that if \(\pi' \) is graphic then \(\pi \) is also graphic, since a realization \(G \) of \(\pi \) can be obtained from a realization \(G' \) of \(\pi' \) by adding a new vertex of degree \(d_n \) and joining it to the vertices whose degrees are reduced by one in going from \(\pi \) to \(\pi' \). In fact, more is true:

Theorem 2. [4] Let \(\pi = (d_1, d_2, \ldots, d_n) \in NS_n \) be a non-increasing sequence. Then \(\pi \) is graphic if and only if \(\pi' \) is graphic.

Theorem 3. [7] If \(r \geq 5 \), then \(\sigma(K_{r+1,n}) \leq 2n(r-2)+8 \) for \(2r+2 \leq n \leq \binom{r}{2} + 3 \) and \(\sigma(K_{r+1,n}) = (r-1)(2n-r) + 2 \) for \(n \geq \binom{r}{2} + 3 \).

Theorem 4. [8] Let \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, d_{r+s+1}, \ldots, d_n) \in GS_n \), where \(d_{r+s} \geq r + s - 1 \) and \(d_n \geq r \). Then \(\pi \) is potentially \(K_{r,s} \)-graphic.
Theorem 5. [8] Let \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, d_{r+s+1}, \ldots, d_n) \in GS_n \), where \(d_s \geq r + s - 1 \), \(d_{r+s} \leq r + s - 2 \) and \(d_n \geq r \). If \(n \geq (r + s)(s - 1) \), then \(\pi \) is potentially \(K_{r,s} \)-graphic.

In order to prove our main results, we also borrow an idea from [8,11]. Let

\[
\pi' = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{2r}, d_{2r+1}, \ldots, d_n)
\]

where \(d_1 \geq \cdots \geq d_{r-1} \geq r \), \(d_r \geq r - 1 \), \(d_{r+1} \geq \cdots \geq d_{2r} \geq r \) and \(d_{2r+1} \geq \cdots \geq d_n \geq r \). Let

\[
\pi'_1 = \begin{cases}
(d_2, \ldots, d_r, d_{r+1} - 1, \ldots, d_{r+d_1} - 1, d_{r+d_1+1}, \ldots, d_n) \\
(d_3 - 1, \ldots, d_{d_1+r-n+1} - 1, d_{d_1+r-n+2}, \ldots, d_r, d_{r+1} - 1, \ldots, d_n - 1)
\end{cases}
\]

and \(\pi''_1 = (d_2^{(1)}, \ldots, d_r^{(1)}, d_{r+1}^{(1)}, \ldots, d_{2r}^{(1)}, d_{2r+1}^{(1)}, \ldots, d_n^{(1)}) \), where \(d_2^{(1)} \geq \cdots \geq d_n^{(1)} \) is the rearrangement of the first \(r - 1 \) terms in \(\pi'_1 \), \(d_{r+i}^{(1)} = d_r^{(1)} - 1 \) for \(1 \leq i \leq r \) and \(d_{2r+i}^{(1)} \geq \cdots \geq d_{2n}^{(1)} \) is the rearrangement of the final \(n - 2r \) terms in \(\pi'_1 \).

For \(\pi'_2 = (d_2^{(1)}, \ldots, d_r^{(1)}, d_{r+1}^{(1)}, \ldots, d_{2r}^{(1)}, d_{2r+1}^{(1)}, \ldots, d_n^{(1)}) \), if \(d_2^{(1)} \geq \cdots \geq d_{r-1}^{(1)} \geq r \) and \(d_r^{(1)} \geq r - 1 \), we can similarly define \(\pi''_2 \) as follows:

\[
\pi''_2 = \begin{cases}
(d_3^{(1)}, \ldots, d_r^{(1)}, d_{r+1}^{(1)} - 1, \ldots, d_{r+d_2^{(1)} - 1}, d_1^{(1)}, d_{r+d_2^{(1)} + 1}^{(1)}, \ldots, d_n^{(1)}) \\
(d_3^{(1)} - 1, \ldots, d_{d_2^{(1)}+r-n+2}^{(1)} - 1, d_1^{(1)}, d_2^{(1)} - 1, \ldots, d_n^{(1)} - 1)
\end{cases}
\]

and \(\pi''_2 = (d_3^{(2)}, \ldots, d_r^{(2)}, d_{r+1}^{(2)}, \ldots, d_{2r}^{(2)}, d_{2r+1}^{(2)}, \ldots, d_n^{(2)}) \), where \(d_3^{(2)} \geq \cdots \geq d_{r}^{(2)} \) is the rearrangement of the first \(r - 2 \) terms in \(\pi''_2 \), \(d_{r+i}^{(2)} = d_{r+i}^{(1)} - 1 \) for \(1 \leq i \leq r \) and \(d_{2r+i}^{(2)} \geq \cdots \geq d_{2n}^{(2)} \) is the rearrangement of the final \(n - 2r \) terms in \(\pi''_2 \). For \(k = 3, 4, \ldots, r - 1 \) in turn, if \(d_{k}^{(k-1)} \geq \cdots \geq d_{r-1}^{(k-1)} \geq r \) and \(d_{r}^{(k-1)} \geq r - 1 \), the definitions of \(\pi''_k \) and \(\pi''_k \) are similar.

For \(\pi''_{r-1} = (d_r^{(r-1)}, d_{r+1}^{(r-1)}, \ldots, d_{2r}^{(r-1)}, d_{2r+1}^{(r-1)}, \ldots, d_n^{(r-1)}) \), if \(d_r^{(r-1)} \geq r - 1 \), we define \(\pi''_r \) as follows:

\[
\pi''_r = (d_{r+1}^{(r-1)} - 1, \ldots, d_{r+1}^{(r-1)} - 1, d_1^{(r-1)}, d_{r+1}^{(r-1)} + 1, \ldots, d_n^{(r-1)}),
\]

and \(\pi''_r = (d_r^{(r)}, d_{2r}^{(r)}, \ldots, d_n^{(r)}) \), where \(d_r^{(r)} \geq \cdots \geq d_{2r}^{(r)} \) is the rearrangement of the first \(r \) terms in \(\pi''_r \) and \(d_{2r+1}^{(r)} \geq \cdots \geq d_n^{(r)} \) is the rearrangement of the final \(n - 2r \) terms in \(\pi''_r \). By the definition of \(\pi''_r \), the following Proposition 1 is obvious.

Proposition 1. Let \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{2r}, d_{2r+1}, \ldots, d_n) \in NS_n \), where \(d_1 \geq \cdots \geq d_{r-1} \geq r \), \(d_r \geq r - 1 \), \(d_{r+1} \geq \cdots \geq d_{2r} \geq r \) and \(d_{2r+1} \geq \cdots \geq d_n \geq r \). Let \(\pi''_r \) be defined as above. If \(\pi''_r \) is graphic, then \(\pi \) is potentially \(K_{r,r} \)-e-graphic.
For the defined sequence \(\pi''_r = (d^{(r)}_{r+1}, \ldots, d^{(r)}_{2r}, d^{(r)}_{2r+1}, \ldots, d^{(r)}_n) \) in Proposition 1, if \(d^{(r)}_{r+1} \geq \cdots \geq d^{(r)}_{2r} \geq 1 \) and \(d^{(r)}_{2r+1} \geq \cdots \geq d^{(r)}_n \geq 1 \), we define \(\pi''_{r+1} = (d^{(r)}_{r+2} - 1, \ldots, d^{(r)}_{r+d^{(r)}_{2r+1}+1} - 1, d^{(r)}_{r+d^{(r)}_{2r+1}+2} - 1, \ldots, d^{(r)}_n) \), and \(\pi''_{r+1} = (d^{(r+1)}_{r+2}, \ldots, d^{(r+1)}_{2r+1}, d^{(r+1)}_{2r+1}, \ldots, d^{(r+1)}_n) \), where \(d^{(r+1)}_{r+2} \geq \cdots \geq d^{(r+1)}_{2r} \) is the rearrangement of the first \(r-1 \) terms in \(\pi''_{r+1} \) and \(d^{(r+1)}_{2r+1} \geq \cdots \geq d^{(r+1)}_n \) is the rearrangement of the final \(n-2r \) terms in \(\pi''_{r+1} \). For \(k = 2, 3, \ldots, r \) in turn, if \(d^{(r+k-1)}_{r+k} \geq \cdots \geq d^{(r+k-1)}_{2r+k} \geq 1 \) and \(d^{(r+k-1)}_{2r+k+1} \geq \cdots \geq d^{(r+k-1)}_n \geq 1 \), the definitions of \(\pi''_{r+k} \) and \(\pi''_{n+k} \) are similar.

Proposition 2. [11] Let \(\pi''_r = (d^{(r)}_{r+1}, \ldots, d^{(r)}_{2r}, d^{(r)}_{2r+1}, \ldots, d^{(r)}_n) \) be a defined sequence as in Proposition 1, \(1 \leq k \leq r \) and let \(\pi''_{r+k} \) be defined as above. If \(\pi''_{r+k} \) is graphic, then \(\pi''_r \) is also graphic.

Lemma 1. [8] Let \(\pi = (d_1, d_2, \ldots, d_n) \in NS_n \), \(m = \max\{d_1, d_2, \ldots, d_n\} \) and \(\sigma(\pi) \) be even. Let \(\pi^* = (d^*_1, d^*_2, \ldots, d^*_n) \) be the rearrangement sequence of \(\pi \), where \(m = d^*_1 \geq d^*_2 \geq \cdots \geq d^*_n \) is the rearrangement of \(d_1, d_2, \ldots, d_n \). If there exists an integer \(n_1 \) \((\leq n)\) such that \(d^*_n \geq h \geq 1 \) and \(n_1 \geq \frac{[\frac{n+1}{2}]}{4} \), then \(\pi \) is graphic.

We now prove the following:

Lemma 2. Let \(r \geq 4 \) and \(n \geq \frac{r^2}{4} + \frac{5}{2}r \). Let \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{2r}, d_{2r+1}, \ldots, d_n) \in GS_n \) with \(d_r \leq 2r-2 \) and \(d_n \geq r \). If there exists an integer \(t \in \{1, 2, \ldots, \left[\frac{r}{2} \right] - 1\} \) such that \(d_{r+t} \geq 2r - 2 - t \) and \(d_{2r} \geq r + t - 1 \), then \(\pi \) is potentially \(K_{r,r} \)-e-graphic.

Proof. Rearrange the terms in \(\pi \) in order to get that

\[
(p_1, \ldots, p_{r-t}, p_{r-t+1}, \ldots, p_r, p_{r+1}, \ldots, p_{r+t}, p_{r+t+1}, \ldots, p_n),
\]

where \(p_1 = d_1, \ldots, p_{r-t} = d_{r-t}; p_{r-t+1} = d_{r+1}, \ldots, p_r = d_{r+t}; p_{r+1} = d_{r+1}, \ldots, p_{r+t} = d_r; p_{r+t+1} = d_{r+t+1}, \ldots, p_n = d_n \). For convenience, the new sequence is still denoted by \(\pi \). Clearly, \(p_1 \geq \cdots \geq p_r \geq 2r - 2 - t, p_{r+1} \geq \cdots \geq p_{2r} \geq r + t - 1 \) and \(2r - 2 \geq p_{2r+1} \geq \cdots \geq p_n \geq r \). By Proposition 1, it is enough to prove that \(\pi''_r \) is graphic.

Since \(\pi''_r = (p^{(r-t-2)}_{r-t-2}, \ldots, p^{(r-t-2)}_{r-t-2}, p^{(r-t-2)}_{r-t-2}, p^{(r-t-2)}_{2r}, p^{(r-t-2)}_{2r}, \ldots, p^{(r-t-2)}_n) \) satisfies

1. \(2r - 2 \geq p^{(r-t-2)}_{r-t-1} \geq \cdots \geq p^{(r-t-2)}_1 \geq d_{r+t} - (r - t - 2) \geq r, \)
2. \(2r - 2 \geq p^{(r-t-2)}_{r-t+1} \geq \cdots \geq p^{(r-t-2)}_n \geq t + 2, \)
3. \(p^{(r-t-2)}_{r-t} = r \) and \(p^{(r-t-2)}_{r-t} \), we get that \(\pi''_r = (p^{(r)}_{r-t+1}, \ldots, p^{(r)}_{r-t}, p^{(r)}_{r-t}, p^{(r)}_{2r}, p^{(r)}_{2r}, \ldots, p^{(r)}_n) \) satisfies
(4) \(n - r - 1 \geq p_{r+1}^{(r)} \geq \cdots \geq p_{r+t-1}^{(r)} \),
(5) \(2r - 2 \geq p_{2r}^{(r)} \geq \cdots \geq p_{2r+1}^{(r)} \geq t - 1 \),
(6) \(2r - 2 \geq p_{2r+1}^{(r)} \geq \cdots \geq p_{n}^{(r)} \geq t + 1 \).

Hence \(\pi_{r+t-1}^\prime \) satisfies
(7) \(2r - 2 \geq p_{r+t}^{(r+t-1)} \geq \cdots \geq p_{2r}^{(r+t-1)} \geq 0 \),
(8) \(2r - 2 \geq p_{2r+1}^{(r+t-1)} \geq \cdots \geq p_{n}^{(r+t-1)} \geq 2 \).

Thus, \(\frac{1}{2} \left(\frac{(2r-2+2+1)^2}{4} \right) \leq \frac{r^2}{2} + \frac{r}{2} \leq n - 2r \). By Lemma 1, \(\pi_{r+t-1}^\prime \) is graphic, and hence \(\pi_{r}^\prime \) is also graphic by Proposition 2.

\[\square \]

3. Main results

For convenience, we first introduce the following notations. Let \(r = 8k + t \), where \(k \geq 0 \) and \(0 \leq t \leq 7 \). If \(t \in \{2, 3, 6, 7\} \), let \(F_t = \{ (8k + t, n) \mid k \geq 0 \text{ and } n \geq 16k + 2t \} \). If \(t \in \{0, 1, 4, 5\} \), let \(F'_t = \{ (8k + t, n) \mid k \geq 0, n \geq 16k + 2t \text{ and } n \text{ is odd} \} \) and \(F''_t = \{ (8k + t, n) \mid k \geq 0, n \geq 16k + 2t \text{ and } n \text{ is even} \} \). Denote \(E_1 = F_2 \cup F'_6 \cup F''_4, E_2 = F_0 \cup F'_4 \cup F''_6, E_3 = F'_7 \cup F''_6 \cup F''_0 \) and \(E_4 = F_3 \cup F'_6 \cup F''_1 \).

3.1 \(\sigma(K_{r,r} - ke, n) \) for even \(r \) and \(n \geq 7r^2 + \frac{1}{2}r - 22 \).

Lemma 3. Let \(r \) be even, \(r \geq 4 \) and \(n \geq 2r \). Then
\[
\sigma(K_{r,r} - re, n) \geq \begin{cases}
(\frac{5}{2}r - 2)n - \frac{11}{8}r^2 + \frac{5}{4}r + 2 - (n - r + 1), & \text{if } (r, n) \in E_1, \\
(\frac{5}{2}r - 2)n - \frac{11}{8}r^2 + \frac{5}{4}r + 1 - (n - r + 1), & \text{if } (r, n) \in E_2.
\end{cases}
\]

Proof. Suppose \((r, n) \in E_1 \). Consider \(\pi = ((n - 1)^{r-1}, 2r - 3, 2r - 4, \ldots, \frac{3}{2}r - 1, (\frac{5}{2}r - 2)^n - \frac{3}{2}r + 2) \), where \(x^y \) stands for \(y \) consecutive terms, each equal to \(x \).

Then \(\sigma(\pi) = (\frac{5}{2}r - 2)n - \frac{11}{8}r^2 + \frac{5}{4}r - (n - r + 1) \) is even and \(f(\pi) = \frac{5}{2}r - 2 \). It follows from the left-most off-diagonal matrix \(\overline{A} \) of \(\pi \) that \(\overline{A} = (\overline{A}_1, \overline{A}_2, \ldots, \overline{A}_n) \) satisfies \(\overline{A}_1 = \cdots = \overline{A}_{\frac{3}{2}r - 2} = n - 1 \). Clearly, \(d_1 + d_2 + \cdots + d_i \leq \frac{3}{2}r - 1 \) for each \(i = 1, 2, \ldots, f(\pi) \).

By Theorem 1, \(\pi \in GS_n \). Let \(\pi_1 = (r - 2, r - 3, \ldots, \frac{5}{2}r - 2, (\frac{5}{2}r - 2)^n - \frac{3}{2}r + 2) \). If \(\pi \) is potentially \(K_{r,r} - re \)-graphic, then there exist integers \(t \) and \(s \), \(t \geq s \geq 1 \) and \(t + s = r + 1 \) such that \(\pi_1 \) is potentially \(K_{s,t} - se \)-graphic, where \(K_{s,t} - se \) is the graph obtained from \(K_{s,t} \) by deleting \(s \) edges which form a matching. Hence, there are at least \(s \) terms in \(\pi_1 \) which are greater than or equal to \(r - s \), a contradiction. So \(\pi \) is not potentially \(K_{r,r} - re \)-graphic.

Thus \(\sigma(K_{r,r} - re, n) \geq \sigma(\pi) + 2 = (\frac{5}{2}r - 2)n - \frac{11}{8}r^2 + \frac{5}{4}r + 2 - (n - r + 1) \).

Now assume \((r, n) \in E_2 \). Consider \(\pi = ((n - 1)^{r-1}, 2r - 3, 2r - 4, \ldots, \frac{3}{2}r - 1, (\frac{5}{2}r - 2)^n - \frac{3}{2}r + 3) \). Then \(\sigma(\pi) = (\frac{5}{2}r - 2)n - \frac{11}{8}r^2 + \frac{5}{4}r - 1 - (n - r + 1) \) is even and \(f(\pi) = \frac{5}{2}r - 2 \). By the left-most off-diagonal matrix \(\overline{A} \) of \(\pi \) that \(\overline{A} = (\overline{A}_1, \overline{A}_2, \ldots, \overline{A}_n) \) satisfies \(\overline{A}_1 = \cdots = \overline{A}_{\frac{3}{2}r - 3} = n - 1, \overline{A}_{\frac{3}{2}r - 2} = n - 2 \). Clearly, \(d_1 + d_2 + \cdots + d_i \leq \frac{3}{2}r - 1 \) for each \(i = 1, 2, \ldots, f(\pi) \).

By Theorem 1, \(\pi \in GS_n \). Similarly, we also can prove that \(\pi \) is not potentially \(K_{r,r} - re \)-graphic.

Thus \(\sigma(K_{r,r} - re, n) \geq \sigma(\pi) + 2 = (\frac{5}{2}r - 2)n - \frac{11}{8}r^2 + \frac{5}{4}r + 1 - (n - r + 1) \). \[\square \]
Lemma 4. Let \(r \) be even, \(r \geq 4 \) and \(n = r^2 + r - 2 \). Then
\[
\sigma(K_{r,r} - e, n) \leq \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) + \left(\frac{3}{2} r^3 - \frac{1}{8} r^2 - 5r \right).
\]

Proof. By Theorem 3,
\[
\sigma(K_{r,r} - e, n) \leq \sigma(K_{2r}, n) \leq (4r - 6)n + 8
= \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) + \left(\frac{3}{2} r^3 - \frac{1}{8} r^2 - \frac{33}{4} r + 13 \right)
\leq \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) + \left(\frac{3}{2} r^3 - \frac{1}{8} r^2 - 5r \right).
\]

Lemma 5. Let \(r \) be even, \(r \geq 4 \) and \(n = r^2 + r - 2 \). Let \(\pi = (d_1, d_2, \ldots, d_n) \in GS_n \) with \(d_n \geq r \). If \(\sigma(\pi) \geq \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) \), then \(\pi \) is potentially \(K_{r,r} - e \)-graphic.

Proof. If \(d_r \geq 2r - 1 \), then by \(n \geq (r + 2)(r - 1) \) and Theorems 4 and 5, \(\pi \) is potentially \(K_{r,r} - e \)-graphic, and hence \(\pi \) is potentially \(K_{r,r} - e \)-graphic.

Now assume \(d_r \leq 2r - 2 \). If \(d_{r+t} \leq 2r - 3 - t \) for any \(t \in \{1, 2, \ldots, \frac{r}{2} - 1\} \), then
\[
\sigma(\pi) \leq (n - 1)(r - 1) + (2r - 2) + (2r - 4) + \cdots + (\frac{3}{2} r - 1) + (\frac{3}{2} r - 2)(n - r) + 3)
= \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) < \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) \leq \sigma(\pi),
\]
a contradiction. Hence there exists an integer \(t \in \{1, 2, \ldots, \frac{r}{2} - 1\} \) such that \(d_{r+t} \geq 2r - 2 - t \). If \(d_{2r} \leq \frac{5}{2} r - 3 \), then \(\sigma(\pi) \leq (n - 1)(r - 1) + (2r - 2)r + (\frac{5}{2} r - 3)(n - 2r + 1) \leq \left(\frac{5}{2} r - 4 \right) n - r^2 + \frac{9}{2} r - 2 < \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) \leq \sigma(\pi),
\]
a contradiction. Hence \(d_{2r} \geq \frac{5}{2} r - 2 \). By Lemma 2, \(\pi \) is potentially \(K_{r,r} - e \)-graphic.

Lemma 6. Let \(r \) be even, \(r \geq 4 \) and \(n = r^2 + r - 2 + t \), where \(0 \leq t \leq 6r^2 - \frac{5}{2} r - 20 \). Then
\[
\sigma(K_{r,r} - e, n) \leq \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) + \frac{r}{4} (6r^2 - r - 20) - \frac{1}{4} rt.
\]

Proof. Use induction on \(t \). It is known from Lemma 4 that the result holds for \(t = 0 \). Now assume that the result holds for \(t - 1 \), \(0 \leq t - 1 \leq 6r^2 - \frac{5}{2} r - 21 \).

Let \(n = r^2 + r - 2 + t \), and \(\pi = (d_1, d_2, \ldots, d_n) \in GS_n \) with \(\sigma(\pi) \geq \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) + \frac{t}{4} (6r^2 - \frac{5}{2} r - 20) - \frac{1}{4} rt \). We only need to prove that \(\pi \) is potentially \(K_{r,r} - e \)-graphic. Obviously, \(\sigma(\pi) \geq \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1) \). If \(d_n \geq r \), then by Lemma 5, \(\pi \) is potentially \(K_{r,r} - e \)-graphic. If \(d_n \leq r - 1 \), then the residual sequence \(\pi' \) of \(\pi \) satisfies \(\sigma(\pi') = \sigma(\pi) - 2d_n \geq \left(\frac{5}{2} r - 2 \right) (n - 1) - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - ((n - 1) - r + 1) + \frac{t}{4} (6r^2 - \frac{5}{2} r - 20) - \frac{1}{4} r(t - 1) \). By the induction hypothesis, \(\pi' \) is potentially \(K_{r,r} - e \)-graphic, and hence so is \(\pi \).

Lemma 7. Let \(r \) be even, \(r \geq 4 \) and \(n = 7r^2 + \frac{1}{2} r - 22 \). Then
\[
\sigma(K_{r,r} - e, n) \leq \left(\frac{5}{2} r - 2 \right) n - \frac{11}{8} r^2 + \frac{5}{4} r + 2 - (n - r + 1).
\]
Proof. It is enough to prove that (•): if \(\pi = (d_1, \ldots, d_n) \in GS_n \) and \(\sigma(\pi) \geq (\frac{5}{2}r - 2)n - \frac{11}{8}r^2 + \frac{5}{2}r + 2 - (n - r + 1) \), then \(\pi \) is potentially \(K_{r,r} - e \)-graphic. Apply induction on \(n \). By Lemma 6, (•) holds for \(n = 7r^2 + \frac{1}{2}r - 22 \). Now suppose that (•) holds for \(n - 1 \geq 7r^2 + \frac{1}{2}r - 22 \). We will prove that (•) holds for \(n \). If \(d_n \geq r \), then by Lemma 5, \(\pi \) is potentially \(K_{r,r} - e \)-graphic. If \(d_n \leq r - 1 \), then the residual sequence \(\pi' \) satisfies \(\sigma(\pi') = \sigma(\pi) - 2d_n \geq (\frac{5}{2}r - 2)(n - 1) - \frac{11}{8}r^2 + \frac{5}{2}r + 2 - ((n - 1) - r + 1) \). By the induction hypothesis, \(\pi' \) and \(\pi \) are potentially \(K_{r,r} - e \)-graphic.

\[\square \]

Theorem 6. Let \(r \geq 4 \) be even, \(1 \leq k \leq r \) and \(n \geq 7r^2 + \frac{1}{2}r - 22 \). Then

\[
\sigma(K_{r,r} - ke, n) = \begin{cases}
\left(\frac{5}{2}r - 2 \right)n - \frac{11}{8}r^2 + \frac{5}{2}r + 2 - (n - r + 1), & \text{if } (r, n) \in E_1, \\
\left(\frac{5}{2}r - 2 \right)n - \frac{11}{8}r^2 + \frac{5}{2}r + 1 - (n - r + 1), & \text{if } (r, n) \in E_2.
\end{cases}
\]

Proof. Since \(K_{r,r} - e \) contains \(K_{r,r} - ke \) as a subgraph and \(K_{r,r} - re \) as a subgraph, it is well known that \(\sigma(K_{r,r} - re, n) \leq \sigma(K_{r,r} - ke, n) \leq \sigma(K_{r,r} - e, n) \). By Lemmas 3 and 7, for \((r, n) \in E_1 \),

\[
\sigma(K_{r,r} - ke, n) = \left(\frac{5}{2}r - 2 \right)n - \frac{11}{8}r^2 + \frac{5}{4}r + 2 - (n - r + 1),
\]

and for \((r, n) \in E_2 \),

\[
\sigma(K_{r,r} - ke, n) = \left(\frac{5}{2}r - 2 \right)n - \frac{11}{8}r^2 + \frac{5}{2}r + 2 - (n - r + 1).
\]

Since \(\sigma(K_{r,r} - ke, n) \) is even, we have

\[
\sigma(K_{r,r} - ke, n) = \left(\frac{5}{2}r - 2 \right)n - \frac{11}{8}r^2 + \frac{5}{2}r + 1 - (n - r + 1)
\]

for \((r, n) \in E_2 \). \(\square \)

3.2 \(\sigma(K_{r,r} - ke, n) \) for odd \(r \) and \(n \geq 7r^2 + 9r - 26 \).

Lemma 8. Let \(r \) be odd, \(r \geq 5 \) and \(n \geq 2r \). Then

\[
\sigma(K_{r,r} - re, n) \geq \begin{cases}
\left(\frac{5}{2}r - \frac{5}{2} \right)n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1), & \text{if } (r, n) \in E_3, \\
\left(\frac{5}{2}r - \frac{5}{2} \right)n - \frac{11}{8}r^2 + \frac{5}{4}r + \frac{3}{2} - (n - r + 1), & \text{if } (r, n) \in E_4.
\end{cases}
\]

Proof. Suppose that \((r, n) \in E_3 \). Consider \(\pi = ((n - 1)^{-1}, 2r - 3, 2r - 4, \ldots, \frac{3}{2}r - 1, \frac{3}{2}r - \frac{3}{2}, \frac{3}{2}r - \frac{5}{2}, \frac{3}{2}r - \frac{5}{2}n^{-2r+1}) \). Then \(\sigma(\pi) = (\frac{5}{2}r - \frac{5}{2}n) - \frac{11}{8}r^2 + \frac{5}{2}r - \frac{5}{2}r - \frac{1}{2} - (n - r + 1) \) is even and \(f(\pi) = \frac{5}{2}r - \frac{3}{2} \). It follows from the left-most off-diagonal matrix \(A \) of \(\pi \) that \(\pi = (\overline{d_1}, \overline{d_2}, \ldots, \overline{d_n}) \) satisfies \(\overline{d_1} = \overline{d_2} = \cdots = \overline{d_{\frac{3}{2}r - \frac{1}{2}}} = n - 1, \overline{d_{\frac{3}{2}r - \frac{1}{2}}} = 2r - 2 \). Clearly, \(d_1 + d_2 + \cdots + d_i \leq \overline{d_1} + \overline{d_2} + \cdots + \overline{d_i} \) for each \(i = 1, 2, \ldots, f(\pi) \). By Theorem 1, \(\pi \in GS_n \). Let \(\pi_1 = (r - 2, r - 3, \ldots, \frac{r}{2} + \frac{1}{2}, \frac{3}{2}r - \frac{1}{2}, \frac{3}{2}r - \frac{3}{2}, \frac{3}{2}r - \frac{5}{2}, \frac{3}{2}r - \frac{5}{2}n^{-2r+1}) \). If \(\pi \) is potentially \(K_{r,r} - re \)-graphic, then there exist integers \(t \) and \(s, t \geq s \geq 1 \) and \(t + s = r + 1 \) such that \(\pi_1 \) is potentially \(K_{s,t} - se \)-graphic. If \(s \leq \frac{r}{2} + \frac{1}{2} \), then there are at least \(s \) terms in \(\pi_1 \) which are greater than or equal to \(r - s \), which is impossible. If \(s = t = \frac{r}{2} + \frac{1}{2} \), then there are at least \(r + 1 \) terms in \(\pi_1 \) which are greater than or equal to \(\frac{r}{2} - \frac{1}{2} \), which is also impossible. Thus, \(\pi \) is not potentially \(K_{r,r} - re \)-graphic. Hence

\[
\sigma(K_{r,r} - re, n) \geq \sigma(\pi) + 2 = \left(\frac{5}{2}r - \frac{5}{2}n \right)n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1).
\]

Now suppose \((r, n) \in E_4 \). Consider \(\pi = ((n - 1)^{-1}, 2r - 3, 2r - 4, \ldots, \frac{3}{2}r - 1, \frac{3}{2}r - \frac{3}{2}, \frac{3}{2}r - \frac{5}{2}, \frac{3}{2}r - \frac{5}{2}n^{-2r}, \frac{3}{2}r - \frac{7}{2}) \). Then \(\sigma(\pi) = (\frac{5}{2}r - \frac{5}{2}n)n - \frac{11}{8}r^2 + \frac{5}{2}r -
\[
\left(\frac{9}{8} - (n - r + 1)\right) \text{ is even and } f(\pi) = \frac{3}{2}r - \frac{3}{2}. \text{ By the left-most off-diagonal matrix } \\
A \text{ of } \pi, \bar{d} = (\bar{d}_1, \bar{d}_2, \ldots, \bar{d}_n) \text{ satisfies } \bar{d}_1 = \bar{d}_2 = \cdots = \bar{d}_{\frac{3}{2}r - \frac{3}{2}} = n - 1, \ bar{d}_{\frac{3}{2}r - \frac{3}{2}} = n - 2, \bar{d}_{\frac{3}{2}r - \frac{3}{2}} = 2r - 2. \text{ Clearly, } d_1 + d_2 + \cdots + d_i \leq d_1 + d_2 + \cdots + d_i \text{ for each } i = 1, 2, \ldots, f(\pi). \text{ By Theorem 1, } \pi \in GS_n. \text{ Similarly, we can prove that } \\
\pi \text{ is not potentially } K_{r,r} - re-graphic. \text{ Thus, } \sigma(K_{r,r} - re, n) \geq \sigma(\pi) + 2 = \left(\frac{5}{2}r - \frac{5}{2}\right)n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{7}{8} - (n - r + 1). \text{ } \Box
\]

Lemma 9. Let \(r \) be odd, \(r \geq 5 \) and \(n = r^2 + r - 2 \). Then
\[
\sigma(K_{r,r} - e, n) \leq \left(\frac{5}{2}r - \frac{5}{2}\right)n - \frac{11}{8}r^2 + \frac{9}{2}r + \frac{15}{8} - (n - r + 1) + \frac{1}{4}(6r^3 + 2r^2 - 32r + 24).
\]

Proof. By Theorem 3,
\[
\sigma(K_{r,r} - e, n) \leq \sigma(K_{2r}, n) \leq (4r - 6)n + 8
\]
\[
= \left(\frac{5}{2}r - \frac{5}{2}\right)n + \left(\frac{3}{2}r - \frac{3}{2}\right)(r^2 + r - 2) + 8
\]
\[
= \left(\frac{5}{2}r - \frac{5}{2}\right)n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1) + \left(\frac{3}{2}r^3 + \frac{3}{2}r^2 - 9r + \frac{97}{8}\right)
\]
\[
= \left(\frac{5}{2}r - \frac{5}{2}\right)n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1) + \frac{1}{4}(6r^3 + 3r^2 - 36r + \frac{97}{2})
\]
\[
= 2r - \frac{5}{2}n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1) + \frac{1}{4}(6r^3 + \frac{9}{2}r^2 - 36r + 44)
\]
\[
\leq \frac{5}{2}(r - \frac{5}{2})n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1) + \frac{1}{4}(6r^3 + 2r^2 - 32r + 24). \text{ } \Box
\]

Lemma 10. Let \(r \geq 5 \) be odd, \(n \geq r^2 + r - 2 \) and \(\pi = (d_1, d_2, \ldots, d_n) \in GS_n \) with \(d_n \geq r \). If \(\sigma(\pi) \geq \left(\frac{5}{2}r - \frac{5}{2}\right)n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1) \), then \(\pi \) is potentially \(K_{r,r} - re-graphic \).

Proof. If \(d_r \geq 2r - 1 \), then by \(n \geq (r + 2)(r - 1) \) and Theorems 4 and 5, \(\pi \) is potentially \(K_{r,r} \)-graphic, and hence \(\pi \) is potentially \(K_{r,r} - e \)-graphic. Assume \(d_r \leq 2r - 2 \). If \(d_{r+t} \leq 2r - 3 - t \) for any \(t \in \{1, 2, \ldots, \frac{r}{2} - \frac{3}{2}\} \), then \(\sigma(\pi) \leq (n - 1)(r - 1) + (2r - 2) + (2r - 4) + \cdots + \left(\frac{3}{2}r - \frac{3}{2}\right)n - \frac{3}{2}r^2 + \frac{3}{2}r + \frac{3}{2} < (\frac{3}{2}r - \frac{3}{2})n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1) \leq \sigma(\pi) \), a contradiction. Hence there exists \(t \in \{1, 2, \ldots, \frac{r}{2} - \frac{3}{2}\} \) such that \(d_{r+t} \geq 2r - 2 - t \). There are two cases.

Case 1. There exists \(t \in \{1, 2, \ldots, \frac{r}{2} - \frac{3}{2}\} \) such that \(d_{r+t} \geq 2r - 2 - t \). If \(d_{2r} \leq \frac{3}{2}r - \frac{7}{2} \), then \(\sigma(\pi) \leq (n - 1)(r - 1) + (2r - 2) + (\frac{3}{2}r - \frac{7}{2})(n - 2r + 1) = (\frac{3}{2}r - \frac{7}{2})n - r^2 + \frac{11}{8}r - \frac{5}{2} < \left(\frac{3}{2}r - \frac{5}{2}\right)n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1) \leq \sigma(\pi) \), a contradiction. Hence \(d_{2r} \geq \frac{3}{2}r - \frac{5}{2} \). By Lemma 2, \(\pi \) is potentially \(K_{r,r} - e \)-graphic.

Case 2. \(d_{r+t} \leq 2r - 3 - t \) for any \(t \in \{1, 2, \ldots, \frac{r}{2} - \frac{3}{2}\} \) and \(d_{\frac{3}{2}r - \frac{1}{2}} = \frac{3}{2}r - \frac{3}{2} \). If \(d_{2r} \leq \frac{3}{2}r - \frac{5}{2} \), then \(\sigma(\pi) \leq (n - 1)(r - 1) + (2r - 2) + (2r - 4) + \cdots + \left(\frac{3}{2}r - \frac{5}{2}\right)n - \frac{5}{2}r - \frac{5}{2} < \left(\frac{3}{2}r - \frac{5}{2}\right)n - \frac{11}{8}r^2 + \frac{7}{2}r - \frac{1}{2} < (\frac{3}{2}r - \frac{5}{2})n - \frac{11}{8}r^2 + \frac{5}{2}r + \frac{15}{8} - (n - r + 1) \leq \sigma(\pi) \), a contradiction. Hence \(d_{2r} \geq \frac{3}{2}r - \frac{3}{2} \). By Lemma 2, \(\pi \) is potentially \(K_{r,r} - e \)-graphic. \(\Box \)
Lemma 11. Let \(r \) be odd, \(r \geq 5 \) and \(n = r^2 + r - 2 + t \), where \(0 \leq t \leq 6r^2 + 8r - 24 \). Then
\[
\sigma(K_{r,r} - e, n) \leq \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1) + \frac{r-1}{4} (6r^2 + 8r - 24) - \frac{r-1}{4} t.
\]

Proof. Use induction on \(t \). It follows from Lemma 9 that Lemma 11 holds for \(t = 0 \). Now suppose that Lemma 11 holds for \(0 \leq t-1 \leq 6r^2 + 8r - 25 \). We will prove that Lemma 11 holds for \(t \). Let \(n = r^2 + r - 2 + t \), and \(\pi = (d_1, d_2, \ldots, d_n) \in GS_n \) with \(\sigma(\pi) \geq \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1) + \frac{r-1}{4} (6r^2 + 8r - 24) - \frac{r-1}{4} t \). Clearly, \(\sigma(\pi) \geq \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1) \). If \(d_n \geq r \), then by Lemma 10, \(\pi \) is potentially \(K_{r,r} - e \)-graphic. If \(d_n \leq r - 1 \), then the residual sequence \(\pi' \) satisfies \(\sigma(\pi') = \sigma(\pi) - 2d_n \geq \left(\frac{5}{2} r - \frac{5}{2} \right) (n-1) - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - \left((n-1) - r + 1 \right) + \frac{r-1}{4} (6r^2 + 8r - 24) - \frac{r-1}{4} (t-1). \) By the induction hypothesis, \(\pi' \) and \(\pi \) are potentially \(K_{r,r} - e \)-graphic. Thus, \(\sigma(K_{r,r} - e, n) \leq \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1) + \frac{r-1}{4} (6r^2 + 8r - 24) - \frac{r-1}{4} t. \) \(\square \)

Lemma 12. Let \(r \) be odd, \(r \geq 5 \) and \(n \geq 7r^2 + 9r - 26 \). Then
\[
\sigma(K_{r,r} - e, n) \leq \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1).
\]

Proof. It is enough to prove that \((*) \): if \(\pi = (d_1, d_2, \ldots, d_n) \in GS_n \) with \(\sigma(\pi) \geq \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1) \), then \(\pi \) is potentially \(K_{r,r} - e \)-graphic. Apply induction on \(n \). By Lemma 11, \((*) \) holds for \(n = 7r^2 + 9r - 26 \). Now suppose that \((*) \) holds for \(n-1 \geq 7r^2 + 9r - 26 \). We will prove that \((*) \) holds for \(n \). If \(d_n \geq r \), then by Lemma 10, \(\pi \) is potentially \(K_{r,r} - e \)-graphic. If \(d_n \leq r - 1 \), then residual sequence \(\pi' \) satisfies \(\sigma(\pi') = \sigma(\pi) - 2d_n \geq \left(\frac{5}{2} r - \frac{5}{2} \right) (n-1) - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - ((n-1) - r + 1). \) By the induction hypothesis, \(\pi' \) and \(\pi \) are potentially \(K_{r,r} - e \)-graphic. \(\square \)

Theorem 7. Let \(r \geq 5 \) be odd, \(1 \leq k \leq r \) and \(n \geq 7r^2 + 9r - 26 \). Then
\[
\sigma(K_{r,r} - ke, n) = \begin{cases} \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1), & \text{if } (r,n) \in E_3, \\ \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1), & \text{if } (r,n) \in E_4. \end{cases}
\]

Proof. By Lemmas 8 and 12, \(\sigma(K_{r,r} - ke, n) = \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1) \) for \((r,n) \in E_3 \) and \(\left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1) \leq \sigma(K_{r,r} - ke, n) \leq \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1) \) for \((r,n) \in E_4 \). Since \(\sigma(K_{r,r} - ke, n) \) is even, we have \(\sigma(K_{r,r} - ke, n) = \left(\frac{5}{2} r - \frac{5}{2} \right) n - \frac{11}{8} r^2 + \frac{5}{8} r + \frac{15}{8} - (n-r+1) \) for \((r,n) \in E_4. \) \(\square \)
REFERENCES

Gang Chen received his BS from Ningxia University and MD at Guangxi University. Since 2003 he has been at the University of Ningxia, which named his a lecturer in 2005. His research interests focus on the graph theory.

Department of Mathematics, Ningxia University, Yinchuan 750021, Ningxia, P.R. China

e-mail: chen@nxu.edu.cn

Jian-Hua Yin received his Ph.D from University of Science and Technology of China in 2001. He has been a professor at Hainan University since 2005. His research interests focus on Graph Theory and Its Applications.

Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, Hainan, P.R. China.

e-mail: yinjh@ustc.edu