DOI QR코드

DOI QR Code

COMPATIBLE MAPS AND COMMON FIXED POINTS IN MENGER PROBABILISTIC METRIC SPACES

Kutukcu, Servet;Sharma, Sushil

  • 발행 : 2009.01.31

초록

In the present work, we introduce two types of compatible maps and prove a common fixed point theorem for such maps in Menger probabilistic metric spaces. Our result generalizes and extends many known results in metric spaces and fuzzy metric spaces.

키워드

Menger space;t-norm;common fixed point;compatible maps

참고문헌

  1. Y. J. Cho, H. K. Pathak, S. M. Kang, and J. S. Jung, Common fixed points of compatible maps of type (β) on fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998), 99-111. https://doi.org/10.1016/S0165-0114(96)00200-X
  2. G. Constantin and I. Istratescu, Elements of Probabilistic Analysis, Ed. Acad. Bucuresti and Kluwer Acad. Publ., 1989.
  3. O. Hadzic, Common fixed point theorems for families of mapping in complete metric space, Math. Japon. 29 (1984), 127-134.
  4. T. L. Hicks, Fixed point theory in probabilistic metric spaces, Rev. Res. Novi Sad 13 (1983), 63-72.
  5. I. Istratescu, On some fixed point theorems in generalized Menger spaces, Boll. Un. Mat. Ital. 5 (13-A) (1976), 95-100.
  6. I. Istratescu, On generalized complete probabilistic metric spaces, Rev. Roum. Math. Pures Appl. XXV (1980), 1243-1247.
  7. G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Sci. 9(1986), 771-779. https://doi.org/10.1155/S0161171286000935
  8. S. Kutukcu, Topics in intuitionistic fuzzy metric spaces, J. Comput. Anal. Appl. 9 (2007), no. 2, 173-180.
  9. S. Kutukcu, A. Tuna, and A. T. Yakut, Generalized contraction mapping principle in intuitionistic Menger spaces and an application to differential equations, Appl. Math. Mech. 28 (2007), no. 6, 779-809. https://doi.org/10.1007/s10483-007-0610-z
  10. K. Menger, Statistical metric, Proc. Nat. Acad. 28 (1942), 535-537. https://doi.org/10.1073/pnas.28.12.535
  11. S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japon. 36 (1991), 283-289.
  12. E. Pap, O. Hadzic, and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, J. Math. Anal. Appl. 202 (1996), 433-449. https://doi.org/10.1006/jmaa.1996.0325
  13. B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.
  14. B. Schweizer, A. Sklar, and E. Thorp, The metrization of SM-spaces, Pasific J. Math. 10 (1960), 673-675. https://doi.org/10.2140/pjm.1960.10.673
  15. V. M. Sehgal and A. T. Bharucha-Reid, Fixed point of contraction mapping on PM spaces, Math. Systems Theory 6 (1972), 97-100. https://doi.org/10.1007/BF01706080
  16. S. Sessa, On weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. Beograd 32 (1982), 149-153.
  17. S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 127 (2002), 345-352. https://doi.org/10.1016/S0165-0114(01)00112-9
  18. B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301 (2005), 439-448. https://doi.org/10.1016/j.jmaa.2004.07.036

피인용 문헌

  1. 1. Common fixed point theorems in Menger spaces with common property (E.A) vol.60, pp.12, 2010, doi:10.4134/CKMS.2009.24.1.017
  2. 2. COMPATIBLE MAPS OF TWO TYPES AND COMMON FIXED POINT THEOREMS ON INTUITIONISTIC FUZZY METRIC SPACE vol.32, pp.2, 2010, doi:10.4134/CKMS.2009.24.1.017
  3. 3. Some Common Fixed Point Theorems in Menger PM Spaces vol.2010, pp.1, 2010, doi:10.4134/CKMS.2009.24.1.017