DOI QR코드

DOI QR Code

THE ATOMIC DECOMPOSITION OF HARMONIC BERGMAN FUNCTIONS, DUALITIES AND TOEPLITZ OPERATORS

Lee, Young-Joo

  • Published : 2009.03.31

Abstract

On the setting of the unit ball of ${\mathbb{R}}^n$, we consider a Banach space of harmonic functions motivated by the atomic decomposition in the sense of Coifman and Rochberg [5]. First we identify its dual (resp. predual) space with certain harmonic function space of (resp. vanishing) logarithmic growth. Then we describe these spaces in terms of boundedness and compactness of certain Toeplitz operators.

Keywords

atomic decomposition;harmonic Bergman space;Toeplitz operator

References

  1. S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992
  2. B. R. Choe, Y. J. Lee, and K. Na, Toeplitz operators on harmonic Bergman spaces, Nagoya Math. J. 174 (2004), 165–186
  3. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^p$, Representation theorems for Hardy spaces, pp. 11–66, Asterisque, 77, Soc. Math. France, Paris, 1980
  4. P. Duren and A. Schuster, Bergman Space, American Mathematical Society, 2004
  5. P. Ghatage and S. Sun, A Luecking-type subspace of $L^1_a$ and its dual, Proc. Amer. Math. Soc. 110 (1990), no. 3, 767–774
  6. P. Ghatage and S. Sun, Duality and multiplication operators, Integral Equations Operator Theory 14 (1991), no. 2, 213–228 https://doi.org/10.1007/BF01199906
  7. W. K. Hayman and P. B. Kennedy, Subharmonic Functions. Vol. I, London Mathematical Society Monographs, No. 9. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976
  8. J. Miao, Reproducing kernels for harmonic Bergman spaces of the unit ball, Monatsh. Math. 125 (1998), no. 1, 25–35 https://doi.org/10.1007/BF01489456
  9. J. Miao, Toeplitz operators on harmonic Bergman spaces, Integral Equations Operator Theory 27 (1997), no. 4, 426–438 https://doi.org/10.1007/BF01192123
  10. M. Pavlovic, Decompositions of $L^p$ and Hardy spaces of polyharmonic functions, J. Math. Anal. Appl. 216 (1997), no. 2, 499–509
  11. B. R. Choe, Note on the Berezin transform on Herz spaces, RIMS Kyokuroku, 21-37, 2006
  12. B. R. Choe and Y. J. Lee, A Luecking type subspace, dualities and Toeplitz operators, Acta Math. Hungar. 67 (1995), no. 1-2, 151–170 https://doi.org/10.1007/BF01874529
  13. M. Jevtic and M. Pavlovic, Harmonic Bergman functions on the unit ball in $R^n$, Acta Math. Hungar. 85 (1999), no. 1-2, 81–96 https://doi.org/10.1023/A:1006620929091
  14. S. Perez-Esteva, Duality on vector-valued weighted harmonic Bergman spaces, Studia Math. 118 (1996), no. 1, 37–47

Cited by

  1. The Bloch space and the dual space of a Luecking-type subspace of 2017, https://doi.org/10.1080/17476933.2017.1377700