Protective Effect of Glycoprotein Isolated from Cudrania tricuspidata on Liver in $CCl_4$-treated A/J Mice

생쥐에 있어서 꾸지뽕 당단백질의 간보호 효과

  • Joo, Heon-Yeong (Molecular Biochemistry Laboratory, Biotechnology Research Institute, Chonnam National University) ;
  • Lim, Kye-Taek (Molecular Biochemistry Laboratory, Biotechnology Research Institute, Chonnam National University)
  • 주헌영 (전남대학교 생명공학연구소) ;
  • 임계택 (전남대학교 생명공학연구소)
  • Published : 2009.02.28

Abstract

This study aimed to determine whether or not glycoprotein isolated from Cudrania tricuspidata Bureau fruit(CTB glycoprotein) exerts a hepatoprotective effect on liver injury induced by the administration of carbon tetrachloride($CCl_4$, 1.0mL/kg) to A/J mice. Following the administration of CTB glycoprotein(0-20mg/kg), the activities of antioxidant enzymes (superoxide dismutase(SOD), catalase(CAT), and glutathione peroxidase(GPx)), and the quantities of measured thiobarbituric acid reactive substances(TBARS), lactate dehydrogenase(LDH), and nitric oxide(NO) were evaluated from the murine liver tissues and plasma. Additionally, the activity of nuclear factor-kappa B(NF-${\kappa}B$) was assessed after pretreatment with $CCl_4$. When the mice were treated with $CCl_4$ alone, the activities of antioxidative enzymes reduced but amounts of TBARS, LDH, and NO increased. However, the results of treatment with CTB glycoprotein(10 and 20 mg/kg) revealed significantly increased activities of antioxidant enzymes(SOD, CAT, and GPx), as compared with $CCl_4$ alone. On the other hand, the result showed significant diminutions of the quantities of TBARS, LDH, and NO after treatment with CTB glycoprotein(10 and 20 mg/kg), as compared to $CCl_4$ alone. The activity of NF-${\kappa}B$ also declined after pretreatment with CTB glycoprotein, as compared with $CCl_4$ treatment alone. Thus, it is suggested that the CTB glycoprotein exerts a protective effect against $CCl_4$-induced liver injury in A/J mice.

Keywords

Cudrania tricuspidata Bureau(CTB) glycoprotein;antioxidant enzyme;lactate dehydrogenase;nitric oxide;nuclear factor-kappa B

References

  1. Harrison DG. Endothelial function and oxidant stress. Clin. Cardiol. 20: II-11-17 (1997)
  2. Pazczola De. Desiener food. Food Technol.-Chicago 47: 92-101(1993)
  3. Cay MC, Lai EK, Poyer JL, Dubose CM, Janzen EG. Oxygen and carbon-centered free redical formation during carbon tetrachloride metabolism. J. Biol. Chem. 259: 2135-2143 (1984)
  4. Weddle CC, Hornbrook KR, McCay PB. Lipid peroxidation and alteration of membrane lipids in isolated hepatocytes exposed to carbon tetrachloride. J. Biol. Chem. 251: 4973-4978 (1976)
  5. Wu J, Zern MA. NF-kappa B, liposomes and pathogenesisof hepatic injury and fibrosis. Front. Biosci. 4: D520-D527 (1999)
  6. Lee CB. Dehanshikmuldogam(A field guide to Korean plants). Hyangmoonsha, Seoul, Korea. p.285 (1985)
  7. Chang CH, Lin CC, Hattori M, Namba T. Effects of anti-lipid peroxidation of Cudrania cochinchinensis var. gerontogea. J. Ethnopharomacol. 44: 179-185 (1994)
  8. Lowry OH, Rosebrough NT, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  9. Buege JA, Aust SD. Microsomal lipid peroxidation. Method Enzymol. 52: 302-310 (1978) https://doi.org/10.1016/S0076-6879(78)52032-6
  10. Deryckere F, Gannon F. A one-hour minipreparation technique for extraction of DNA-binding proteins from animal tissues. Biotechniques 16: 405 (1994)
  11. Jones DP, Eklow L, Thor H, Orrenius S. Metabolism of hydrogen peroside in isolated hepatocytes: Relative contributions of catalase and glutathione peroxidase in decomposition of endogenousily generated H2O2. Arch. Biochem. Biophys. 210: 505-516 (1981) https://doi.org/10.1016/0003-9861(81)90215-0
  12. Plaa GL, Witschi H. Chemicals, drugs and lipid per-oxidation. Am. Rev. Toxicol. Pharmacol. 16: 125-141 (1976) https://doi.org/10.1146/annurev.pa.16.040176.001013
  13. Ohshima H, Tazawa H, Sylla BS, Sawa T. Prevention of human cancer by modulation of chronicinflammatory processes. Mutat. Res. 591: 110-122 (2005) https://doi.org/10.1016/j.mrfmmm.2005.03.030
  14. Beauchamp C, Fridovich I. Superoxide dismurase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-287 (1971) https://doi.org/10.1016/0003-2697(71)90370-8
  15. Thurman RG, Bradford B, Limuro Y, Keecht K, Conner HM, Adachi Y, Wall C, Arteel G, Releigh J, Forman D, Mason RF. Role of kupffer cells, endotoxin and free radicals in gepatotoxicity due to prolonged alchol consumption: studies in femake and malerats. J. Nutr. 127: 903s-906s (1977)
  16. Camandola S, Scavazza A, Leonarduzzi G, Biasi F, Chiarpotto E, Azzi A, Poli G. Biogenic 4-hydroxy-2-nonenal activates transcription factor AP-1 but not NF-kappa B in cells of the macrophage lineage. Biofactors 6: 173-179 (1997) https://doi.org/10.1002/biof.5520060211
  17. Kangjoshinewhakwon : Jungyakdesajon(Great dictionary of Chinese medicine). 2nd ed, Sohakkyan, Shanghai, China. p.2383 (1985)
  18. Kim SH, Kim NJ, Chon JS, Park JC. Determination of flavonoid by HPLC and biological activities from the leaves of Cudrania tricuspidata Bureau J. Korean Soc. Food Sci. Nutr. 22: 68-72 (1993)
  19. Otlersen T, Vance B, Doorenbos NJ, Chang BL, EI-Feraly FS. The crystal structure of cudranone, 2,6,3'-trihydroxy-4-methoxy-2'-(3-methoxy-2-buternyl)-I, a new antimicrobial agent from Cudrania chochinchinensis. Acta Chem. Scand B. 31: 434-436 (1977)
  20. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishok JS. Tannenbaum SR. Analysis of nitrate, and [15N] nitratein biologicalfluds. Anal. Biochem. 126: 131-138 (1982) https://doi.org/10.1016/0003-2697(82)90118-X
  21. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  22. Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Diferential distribution of glutathioneelated enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem. Pharmacol. 33: 1801-1807 (1984) https://doi.org/10.1016/0006-2952(84)90353-8
  23. Nguyen T, Brunson D, Crespy CL, Penman BW, Wishnok JS, Tannenbaum SR. DNA damages and vutaion in human cells exposed to nitric oxide in vitro. Proc. Natl. Acad. Aci. USA 89:3030- 3034 (1992) https://doi.org/10.1073/pnas.89.7.3030
  24. Zawaski K, Gruebele A, Kaplan D, Reddy S, Mortensen A, Novak RF. Evidence for enhanced expression of c-fos, cjun,and the Ca (2+)-activated neutral protease in rat liver following carbon tetrachloride administration. Biochem. Bioph. Res. Co. 197: 585-590 (1993) https://doi.org/10.1006/bbrc.1993.2519
  25. Elliott MJ. Biological properties of plant flavonoids: An overview. J. Pharmacog. 34: 344-348 (1996)
  26. Farrel GC, George J, Hall PLM, McCullough AJ. Fatty liver disease;NASH and related disorders. Geoffery CF(ed). Blackwell Publishing, Oxford, UK (2004)
  27. Deisseroth A, Dounce AL. Catalase: Physical and chermical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 50: 319-375 (1970)
  28. Dint JL, Hsu JS, Wang MM, Txen JT. Purification and glycosylation analysis of an acidic pectin methylesterase in jelly fig(Ricus awkeotsang) achenes. J. Agr. Food Chem. 50: 2920-2925 (2002) https://doi.org/10.1021/jf010845+
  29. Nichols TC, Ficher TH, Deliartyris EN, Baldwin AS Jr. Role of nuclear factor-kb (NF$\kappa$$\beta$) in inflammation, periodontitis, and atherogenesis. Ann. Periodontol. 6: 20-29 (2001) https://doi.org/10.1902/annals.2001.6.1.20
  30. Hirsch Rl, Kellner A. The pathogenesis of hyperlipemia induced by means of surface-active agents. II. Failure of exchange of cholesterol between the plasma and the liver in rabbits given Triton WR 1339. J. Exp. Med. 104: 15-24 (1966)
  31. Ho YS, Crapo JD. Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. FEBS Lett. 229: 256-260 (1988) https://doi.org/10.1016/0014-5793(88)81136-0
  32. Kimura Y, Miyagi C, kimura M, Nitoda M, kawai N, Sugimoto H. structure features of N-glycans linked to royal jelly glycoprotein: Structure of high-mannose type, hybride type, and biantenary type glycans. Biosci. Biotech. Biochem. 64: 2109-2120 (2000) https://doi.org/10.1271/bbb.64.2109
  33. Long RM, Moore L. Biochemical evaluation of rat heaptocyte primary cultures as a midel for carbon tertrachloride hepatotoxicity:Comparative strudies in vivo and in vitro. Toxicol. Appl. Pharm. 92: 295-306 (1988) https://doi.org/10.1016/0041-008X(88)90389-4
  34. Evance CR, hallivell B, Lunt GG. Free Fadicals and Oxidative Stress: Environment, Drug and Food Additives. Ashgate Publishing Co., Alderghot, UK. pp. 1-31 (1995)
  35. Bergmeyer HU, Bernt E. Lactate dehydrogenase. pp. 574-579. In:Methods of Enzymatic Analysis. Bergmeyer HU (ed). 2$^{nd}$ ed, Academic Press, New York, NY, USA (1974)
  36. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Bio. Med. 27: 612-616 (1999) https://doi.org/10.1016/S0891-5849(99)00107-0
  37. Thomson JF, Nance SL, Tollaksen SL. Spectrophotometric assay of catalase with perborate as substrate. P. Soc. Exp. Biol. Med. 157: 33-35 (1978)
  38. Sadaki O. The development of functional foods and materials. Bioindustry 13: 44-50 (1996)
  39. Sozmen EY, Tanyakin T, Onat T, kufay F, Erlacin S. Ethanolinduced oxidative stress and memvrane injury in rat erythrocytes Eur. J. Cilin. Chem. Clin. Biochem. 32: 741-744 (1994)
  40. Kim DH, Yoon SH. Hepatoprotective effects of sosihotang on $CCI_4$ induced liver injury in rats. J Korean Soc. Hyg. Sci. 4: 1-6 (1998)
  41. Cesaratto L, Vascotto C, Calligaris S, Tell G. The importance of redox state in liver damage. Ann. Hepatol. 3: 86-92 (2004)
  42. Seef LB, Lindsay KL, Bacon BR, Kresina TF, Hoofnagle JH. Complementary and alternative medicine in chronic liver disease. Hepatology 34: 595-603 (2001) https://doi.org/10.1053/jhep.2001.27445
  43. Moody CS, Hanssan HM. Mutagenicity of oxygen free radicals. Proc. Natl. Acad. Sci. USA 79: 2855-22859 (1982) https://doi.org/10.1073/pnas.79.9.2855
  44. Kim SM, Cho YS, Kim EJ, Han HP, Lee SH, Sung SK. Effect of water extracts of Salvia milrorrhixa Bge. Prunus persica Stokes, Angelica gigas Nakai and Pinus strobes on lipid oxidation. J. Korean Soc Food Sci. Nur. 27: 339-405 (1998)