Fabrication of Hexagonally Assembled Gold Nonodots Based on Anodization of Aluminum

알루미늄 양극산화를 이용한 육각구조로 규칙적으로 배열된 금 나노구조 제조

  • Lee, Joon Ho (Department of Textile Engineering, Inha University) ;
  • Lee, Han Sub (Department of Textile Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemical Engineering, Inha University)
  • Received : 2009.01.15
  • Accepted : 2009.02.04
  • Published : 2009.04.10


Porous alumina prepared by anodization has been widely studied since it shows very regular nanostructures at inexpensive prices. In this article, porous alumina is obtained by anodization of aluminum in the oxalic acid. After the first formed oxide is selectively removed from the aluminum substrate, the hexagonal nanostructures on the fresh aluminum are converted to nanodots by the second anodization in boric acid. Nanodots are arrayed in the convex of the hexagonal nanostructures. The optimization condition for the fabrication of nanodots with a height of 20 nm is investigated in detail. Subsequently, a gold film is deposited on the nanodots, resulting in the formation of gold nanodots arrays which are probably interesting substrate for biosensor applications.


  1. S. Kim, J. Lim, and J. Choi, Polym. Sci. Technol., 17, 742 (2006)
  2. H. Masuda and K. Fukuda, Science, 268, 1466 (1995) https://doi.org/10.1126/science.268.5216.1466
  3. H. Masuda, F. Hasegawa, and S. Ono, J. Electrochem. Soc., 144, L127 (1997) https://doi.org/10.1149/1.1837634
  4. O. Jessensky, F. M$\ddot{u}$ller, and U. G\ddot{o}sele, Appl. Phys. Lett., 72, 1173 (1998) https://doi.org/10.1063/1.121004
  5. A.-P. Li, F. M$\ddot{u}$ller, A. Birner, K. Nielsch, and U. G\ddot{o}sele, J. Appl. Phys., 84, 6023 (1998)
  6. H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys., 37, L1340 (1998) https://doi.org/10.1143/JJAP.37.L1340
  7. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett., 71, 2770 (1997) https://doi.org/10.1063/1.120128
  8. Z. J. Sun and H. K. Kim, Appl. Phys. Lett., 81, 3458 (2002) https://doi.org/10.1063/1.1517719
  9. A.-P. Li, F. M\ddot{U}ller, and U. G\ddot{o}sele, Electrochem. Solid State Lett., 3, 131 (2000)
  10. I. Mikulskas, S. Juodkazis, R. Toma$\check{s}$i$\bar{u}$nas, and J. G. Dumas, Adv. Mater., 13, 1574 (2001) https://doi.org/10.1002/1521-4095(200110)13:20<1574::AID-ADMA1574>3.0.CO;2-9
  11. J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. G$\ddot{o}$sele, J. Vac. Sci. Technol., B 21, 763 (2003) https://doi.org/10.1116/1.1556397
  12. J. Choi, Y. Park, and A. Scherer, Nanotechnology, 16, 1655 (2005) https://doi.org/10.1088/0957-4484/16/9/042
  13. J. Choi, S. Kim, J. Lee, J. Lim, S. Lee, and K. Kim, Electrochem. Commun, 9, 971 (2007) https://doi.org/10.1016/j.elecom.2006.11.038
  14. J. Choi, S. Kim, J. Lee, S. Nam, J. Kang, and J. Chang, Nanotechnology, 18, 215303 (2007) https://doi.org/10.1088/0957-4484/18/21/215303
  15. D. R. Shankaran, K. V. Gobi, and N. Miura, Sens. Actuators B: Chem., 121, 158 (2007) https://doi.org/10.1016/j.snb.2006.09.014
  16. M. Rocca, Surf. Sci. Ref., 22, 1 (1995) https://doi.org/10.1016/0167-5729(95)00004-6
  17. P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, Sens. Actuators B: Chem., 54, 43 (1999) https://doi.org/10.1016/S0925-4005(98)00325-6
  18. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, Acc. Chem. Res., 40, 53 (2007) https://doi.org/10.1021/ar0401045
  19. A. P. Li, F. M$\ddot{u}$ller, A. Birner, K. Nielsch, and U. G\ddot{o}sele, J. Appl. Phys., 84, 6023 (1998) https://doi.org/10.1063/1.368911
  20. J. Choi, Y.-B. Park, and A. Scherer, Nanotechnology, 16, 1655 (2005) https://doi.org/10.1088/0957-4484/16/9/042
  21. J. Choi, R. B. Wehrsoph, and U. G$\ddot{o}$sele, Electrochim. Acta, 50, 2591 (2005) https://doi.org/10.1016/j.electacta.2004.11.004