Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation

  • Bhak, Ghi-Bom (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Choe, Young-Jun (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Paik, Seung-R. (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
  • Published : 2009.09.30


Amyloidogenesis defines a condition in which a soluble and innocuous protein turns to insoluble protein aggregates known as amyloid fibrils. This protein suprastructure derived via chemically specific molecular self-assembly process has been commonly observed in various neurodegenerative disorders such as Alzheimer's, Parkinson's, and Prion diseases. Although the major culprit for the cellular degeneration in the diseases remains unsettled, amyloidogenesis is considered to be etiologically involved. Recent recognition of fibrillar polymorphism observed mostly from in vitro amyloidogeneses may indicate that multiple mechanisms for the amyloid fibril formation would be operated. Nucleation-dependent fibrillation is the prevalent model for assessing the self-assembly process. Following thermodynamically unfavorable seed formation, monomeric polypeptides bind to the seeds by exerting structural adjustments to the template, which leads to accelerated amyloid fibril formation. In this review, we propose another in vitro model of amyloidogenesis named double-concerted fibrillation. Here, two consecutive assembly processes of monomers and subsequent oligomeric species are responsible for the amyloid fibril formation of $\alpha$-synuclein, a pathological component of Parkinson's disease, following structural rearrangement within the oligomers which then act as a growing unit for the fibrillation.


  1. Sipe, J. D. (1992) Amyloidosis. Annu. Rev. Biochem. 61, 947-975
  2. Chiti, F. and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333-366
  3. Selkoe, D. J. (2003) Folding proteins in fatal ways. Nature 426, 900-904
  4. Gebbink, M. F. B. G., Claessen, D., Bouma, B., Dijkhuizen, L. and Wosten, H. A. B. (2005) Amyloids - a functional coat for microorganisms. Nat. Rev. Microbiol. 3, 333-341
  5. Podrabsky, J. E., Carpenter, J. F. and Hand, S. C. (2001) Survival of water stress in annual fish embryos: dehydration avoidance and egg envelope amyloid fibers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R123-R131
  6. Sunde, M. and Blake, C. C. F. (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q. Rev. Biophys. 31, 1-39
  7. Song, Y., Challa, S. R., Medforth, C. J., Qiu, Y., Watt, R. K., Pena, D., Miller, J. E., Swol, F. and Shelnutt, J. A. (2004) Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem. Commun. 1044-1045
  8. Reches, M. and Gazit, E. (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625-627
  9. Carny, O., Shalev, D. E. and Gazit, E. (2006) Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett. 6, 1594-1597
  10. Reches, M. and Gazit, E. (2007) Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions. J. Nanosci. Nanotechnol. 7, 2239-2245
  11. Corrigan, A. M., Muller, C. and Krebs, M. R. H. (2006) The formation of nematic liquid crystal phases by hen lysozyme amyloid fibrils. J. Am. Chem. Soc. 128, 14740-14741
  12. Yang, Z., Liang, G., Wang, L. and Xu, B. (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J. Am. Chem. Soc. 128, 3038-3043
  13. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. and Lansbury, P. T. Jr. (1996) NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35, 13709-13715
  14. Goedert, M. (2001) Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2, 492-501
  15. Jaikaran, E. T. A. S. and Clark, A. (2001) Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim. Biophys. Acta-Mol. Basis Dis. 1537, 179-203
  16. Chiti, F. and Dobson, C. M. (2009) Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 5, 15-22
  17. Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C. and Sarma, V. R. (1965) Structure of hen egg-white lysozyme: a three-dimensional fourier synthesis at 2 A resolution. Nature 206, 757-761
  18. Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. U.S.A. 95, 13363-13383
  19. Pepys, M. B., Hawkins, P. N., Booth, D. R., Vigushin, D. M., Tennent, G. A., Soutar, A. K., Totty, N., Nguyen, O., Blake, C. C. F., Terry, C. J., Feest, T. G., Zalin, A. M. and Hsuan, J. J. (1993) Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362, 553-557
  20. Goldsbury, C., Frey, P., Olivieri, V., Aebi, U. and Muller, S. A. (2005) Multiple assembly pathways underlie amyloid-b fibril polymorphisms. J. Mol. Biol. 352, 282-298
  21. Griffith, J. S. (1967) Self-replication and scrapie. Nature 215, 1043-1044
  22. Dong, J., Canfield, J. M., Mehta, A. K., Shokes, J. E., Tian, B., Childers, W. S., Simmons, J. A., Mao, Z., Scott, R. A., Warncke, K. and Lynn, D. G. (2007) Engineering metal ion coordination to regulate amyloid fibril assembly and toxicity. Proc. Natl. Acad. Sci. U.S.A. 104, 13313-13318
  23. Harper, J. D. and Lansbury, P. T. Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385-407
  24. Wood, S. J., Wypych, J., Steavenson, S., Louis, J. -C., Citron, M. and Biere, A. L. (1999) $\alpha$-Synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson's disease. J. Biol. Chem. 274, 509-512
  25. Li, J., Uversky, V. N. and Fink, A. L. (2001) Effect of familial Parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human $\alpha$-synuclein. Biochemistry 40, 604-613
  26. Conway, K. A., Lee, S. -J., Rochet, J. -C., Ding, T. T., Williamson, R. E. and Lansbury, P. T. Jr. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both a-synuclein mutations linked to early- onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. U.S.A. 97, 571-576
  27. Hoyer, W., Cherny, D., Subramaniam, V. and Jovin, T. M. (2004) Rapid self-assembly of a-synuclein observed by in situ atomic force microscopy. J. Mol. Biol. 340, 127-139
  28. Jain, S. and Udgaonkar, J. B. (2008) Evidence for stepwise formation of amyloid fibrils by the mouse prion protein. J. Mol. Biol. 382, 1228-1241
  29. Caughey, B. and Lansbury, P. T. Jr. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267-298
  30. Costerton, J. W., Stewart, P. S. and Greenberg, E. P. (1999) Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322
  31. Kim, Y. -S., Lee, D., Lee, E. -K., Sung, J. Y., Chung, K. C., Kim, J. and Paik, S. R. (2001) Multiple ligand interaction of a-synuclein produced various forms of protein aggregates in the presence of A$\beta$25-35, copper, and eosin. Brain Res. 908, 93-98
  32. Paik, S. R., Lee, D., Cho, H. -J., Lee, E. -N. and Chang, C. -S. (2003) Oxidized glutathione stimulated the amyloid formation of a-synuclein. FEBS Lett. 537, 63-67
  33. Sandal, M., Valle, F., Tessari, I., Mammi, S., Bergantino, E., Musiani, F., Brucale, M., Bubacco, L. and Samori, B. (2008) Conformational equilibria in monomeric $\alpha$-synuclein at the single-molecule level. PLoS Biol. 6, e6
  34. Recchia, A., Debetto, P., Negro, A., Guidolin, D., Skaper, S. D. and Giusti, P. (2004) a-Synuclein and Parkinson's disease. FASEB 18, 617-626
  35. McLaurin, J., Yang, D. -S., Yip, C. M. and Fraser, P. E. (2000) Review: modulating factors in amyloi-b fibril formation. J. Struct. Biol. 130, 259-270
  36. Cuajungco, M. P., Goldstein, L. E., Nunomura, A., Smith, M. A., Lim, J. T., Atwood, C. S., Huang, X., Farrag, Y. W., Perry, G. and Bush, A. I. (2000) Evidence that the b-amyloid plaques of Alzhermer's disease represent the redox-silencing and entombment of Ab by zinc. J. Biol. Chem. 275, 19439-19442
  37. Opazo, C., Huang, X., Cherny, R. A., Moir, R. D., Roher, A. E., White, A. R., Cappai, R., Masters, C. L., Tanzi, R. E., Inestrosa, N. C. and Bush, A. I. (2002) Metalloenzyme-like activity of Alzheimer's disease $\beta$-amyloid. J. Biol. Chem. 277, 40302-40308
  38. Lee, D., Lee, E. -K., Lee, J. -H., Chang, C. -S. and Paik, S. R. (2001) Self-oligomerization and protein aggregation of a-synuclein in the presence of coomassie brilliant blue. Eur. J. Biochem. 268, 295-301
  39. Leonil, J., Henry, G., Jouanneau, D., Delage, M. -M., Forge, V. and Putaux, J. -L. (2008) Kinetics of fibril formation of bovine k-casein indicate a conformational rearrangement as a critical step in the process. J. Mol. Biol. 381, 1267-1280
  40. Barnham, K. J., Ciccotosto, G. D., Tickler, A. K., Ali, F. E., Smith, D. G., Williamson, N. A., Lam, Y. -H., Carrington, D., Tew, D., Kocak, G., Volitakis, I., Separovic, F., Barrow, C. J., Wade, J. D., Masters, C. L., Cherny, R. A., Curtain, C. C., Bush, A. I. and Cappai, R. (2003) Neurotoxic, redox-competent Alzheimer's b-amyloid is released from lipid membrane by methionine oxidation. J. Biol. Chem. 278, 42959-42965
  41. Bernier, G. M. (1980) b2-Microglobulin: structure, function and significance. Vox Sanguinis. 38, 323-327
  42. Koch, K. M. (1992) Dialysis-related amyloidosis. Kidney Int. 41, 1416-1429
  43. Fandrich, M., Forge, V., Buder, K., Kittler, M., Dobson, C. M. and Diekmann, S. (2003) Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc. Natl. Acad. Sci. U.S.A. 100, 15463-15468
  44. Modler, A. J., Gast, K., Lutsch, G. and Damaschun, G. (2003) Assembly of amyloid protofibrils via critical oligomers - A novel pathway of amyloid formation. J. Mol. Biol. 325, 135-148
  45. Vestergaard, B., Groenning, M., Roessle, M., Kastrup, J. S., Weert, M., Flink, J. M., Frokjaer, S., Gajhede, M. and Svergun, D. I. (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol. 5, e134
  46. Barnhart, M. M. and Chapman, M. R. (2006) Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131-147
  47. Talbot, N. J. (2003) Aerial morphogenesis: enter the chaplins. Curr. Biol. 13, R696-R698
  48. Cherny, I. and Gazit, E. (2008) Amyloids: Not only pathological agents but also ordered nanomaterials. Angew. Chem. Int. Ed. 47, 4062-4069
  49. Carulla, N., Caddy, G. L., Hall, D. R., Zurdo, J., Gairi, M., Feliz, M., Giralt, E., Robinson, C. V. and Dobson, C. M. (2005) Molecular recycling within amyloid fibrils. Nature 436, 554-558
  50. Morozova-Roche, L. A., Zamotin, V., Malisauskas, M., Ohman, A., Chertkova, R., Lavrikova, M. A., Kostanyan, I. A., Dolgikh, D. A. and Kirpichnikov, M. P. (2004) Fibrillation of carrier protein albebetin and its biologically active constructs. Multiple oligomeric intermediates and pathways. Biochemistry 43, 9610-9619
  51. Zhang, S. (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171-1178
  52. Scheibel, T., Parthasarathy, R., Sawicki, G., Lin, X. -M., Jaeger, H. and Lindquist, S. L. (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. U.S.A. 100, 4527-4532
  53. Bhak, G., Lee, J. -H., Hahn, J. -S. and Paik, S. R. (2009) Granular assembly of a-synuclein leading to the accelerated amyloid fibril formation with shear stress. PLoS ONE 4, e4177
  54. Bitan, G., Kirkitadze, M. D., Lomakin, A., Vollers, S. S., Benedek, G. B. and Teplow, D. B. (2003) Amyloid b-protein (Ab) assembly: Ab40 and Ab42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. U.S.A. 100, 330-335
  55. Kayed, R., Sokolov, Y., Edmonds, B., McIntire, T. M., Milton, S. C., Hall, J. E. and Glabe, C. G. (2004) Permeabilization of lipid bilayers is a common conformationdependent activity of soluble amyloid oligomers in protein misfolding diseases. J. Biol. Chem. 279, 46363-46366
  56. Huang, X., Cuajungco, M. P., Atwood, C. S., Hartshorn, M. A., Tyndall, J. D. A., Hanson, G. R., Stokes, K. C., Leopold, M., Multhaup, G., Goldstein, L. E., Scarpa, R. C., Saunders, A. J., Lim, J., Moir, R. D., Glabe, C., Bowden, E. F., Masters, C. L., Fairlie, D. P., Tanzi, R. E. and Bush, A. I. (1999) Cu(II) potentiation of Alzheimer Ab neurotoxicity. J. Biol. Chem. 274, 37111-37116
  57. Fu, X., Wang, Y., Huang, L., Sha, Y., Gui, L., Lai, L. and Tang, Y. (2003) Asseblies of metal nanoparticles and self-assembled peptide fibrils - formation of double helical and single-chain arrays of metal nanoparticles. Adv. Mater. 15, 902-906
  58. Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W. and Glabe, C. G. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486-489
  59. Kumar, S. and Udgaonkar, J. B. (2009) Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation. J. Mol. Biol. 385, 1266-1276
  60. Uversky, V. N., Lee, H. -J., Li, J., Fink, A. L. and Lee, S. -J. (2001) Stabilization of partially folded conformation during a-synuclein oligomerization in both purified and cytosolic preparations. J. Biol. Chem. 276, 43495-43498
  61. Kikuchi, T., Mizunoe, Y., Takade, A., Naito, S. and Yoshida, S. (2005) Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adhearence to human uroepithelial cells. Microbiol. Immunol. 49, 875-884
  62. Hardy, J. A. and Higgins, G. A. (1992) Alzheimer's disease: The amyloid cascade hypothesis. Science 256, 184-185
  63. Gosal, W. S., Morten, I. J., Hewitt, E. W., Smith, D. A., Thomson, N. H. and Radford, S. E. (2005) Competing pathways determine fibril morphology in the self-assembly of b2-microglobulin into amyloid. J. Mol. Biol. 351, 850-864
  64. Bennett, M. J., Schlunegger, M. P. and Eisenberg, D. (1995) 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 4, 2455-2468
  65. Bader, R., Bamford, R., Zurdo, J., Luisi, B. F. and Dobson, C. M. (2006) Probing the mechanism of amyloidogenesis through a tandem repeat of the PI3-SH3 domain suggests a generic model for protein aggregation and fibril formation. J. Mol. Biol. 356, 189-208
  66. Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356
  67. Fowler, D. M., Koulov, A. V., Balch, W. E. and Kelly, J. W. (2007) Functional amyloid - from bacteria to humans. Trends Biochem. Sci. 32, 217-224
  68. Baxa, U., Speransky, V., Steven, A. C. and Wickner, R. B. (2002) Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc. Natl. Acad. Sci. U.S.A. 99, 5253-5260
  69. Kodali, R. and Wetzel, R. (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr. Opin. Struct. Biol. 17, 48-57
  70. Wetzel, R., Shivaprasad, S. and Williams, A. D. (2007) Plasticity of amyloid fibrils. Biochemistry 46, 1-10
  71. Eakin, C. M., Attenello, F. J., Morgan, C. J. and Miranker, A. D. (2004) Oligomeric assembly of native-like precursors precedes amyloid formation by $\beta$-2 microglobulin. Biochemistry 43, 7808-7815
  72. Souillac, P. O., Uversky, V. N. and Fink, A. L. (2003) Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN. Biochemistry 42, 8094-8104
  73. Iconomidou, V. A., Vriend, G. and Hamodrakas, S. J. (2000) Amyloids protect the silkmoth oocyte and embryo. FEBS Lett. 479, 141-145
  74. Teplow, D. B. (1998) Structural and kinetic features of amyloid b-protein fibrillogenesis. Amyloid: Int. J. Exp. Clin. Invest. 5, 121-142
  75. Uversky, V. N., Li, J. and Fink, A. L. (2001) Evidence for a partially folded intermediate in $\alpha$-synuclein fibril formation. J. Biol. Chem. 276, 10737-10744
  76. Uversky, V. N., Li, J. and Fink, A. L. (2001) Pesticides directly accelerate the rate of $\alpha$-synuclein fibril formation: a possible factor in Parkinson's disease. FEBS Lett. 500, 105-108
  77. Lee, J. -H., Bhak, G., Lee, S. -G. and Paik, S. R. (2008) Instantaneous amyloid fibril formation of a-synuclein from the oligomeric granular structures in the presence of hexane. Biophys. J. 95, L16-L18
  78. Walsh, D. M., Hartley, D. M., Kusumoto, Y., Fezoui, Y., Condron, M. M., Lomakin, A., Benedek, G. B., Selkoe, D. J. and Teplow, D. B. (1999) Amyloid $\beta$-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945-25952
  79. Spillantini, M. G., Schmidt, M. L., Lee, V. M. -Y., Trojanowski, J. Q., Jakes, R. and Goedert, M. (1997) $\alpha$- Synuclein in Lewy bodies. Nature 388, 839-840
  80. Serio, T. R., Cashikar, A. G., Kowal, A. S., Sawicki, G. J., Moslehi, J. J., Serpell, L., Arnsdorf, M. F. and Lindquist, S. L. (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317-1321
  81. Zhang, Y., Gu, H., Yang, Z. and Xu, B. (2003) Supramolecular hydrogels respond to lignad-receptor interaction. J. Am. Chem. Soc. 125, 13680-13681
  82. Fink, A. L. (2006) The aggregation and fibrillation of $\alpha$-synuclein. Acc. Chem. Res. 39, 628-634
  83. Trinh, C. H., Smith, D. P., Kalverda, A. P., Phillips, S. E. V. and Radford, S. E. (2002) Crystal structure of monomeric human $\beta$-2-microglobulin reveals clues to its amyloidogenic properties. Proc. Natl. Acad. Sci. U.S.A. 99, 9771-9776
  84. Cheon, M., Chang, I., Mohanty, S., Luheshi, L. M., Dobson, C. M., Vendruscolo, M. and Favrin, G. (2007) Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLoS Comput. Biol. 3, 1727-1738
  85. Sacchettini, J. C. and Kelly, J. W. (2002) Therapeutic strategies for human amyloid diseases. Nat. Rev. Drug. Discov. 1, 267-275
  86. Huang, X., Atwood, C. S., Hartshorn, M. A., Multhaup, G., Goldstein, L. E., Scarpa, R. C., Cuajungco, M. P., Gray, D. N., Lim, J., Moir, R. D., Tanzi, R. E. and Bush, A. I. (1999) The Ab peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609-7616
  87. Baldwin, A. J., Bader, R., Christodoulou, J., MacPhee, C. E., Dobson, C. M. and Barker, P. D. (2006) Cytochrome display on amyloid fibrils. J. Am. Chem. Soc. 128, 2162-2163
  88. Koppaka, V. and Axelsen, P. H. (2000) Accelerated accumulation of amyloid b proteins on oxidatively damaged lipid membranes. Biochemistry 39, 10011-10016
  89. Quintas, A., Vaz, D. C., Cardoso, I., Saraiva, M. J. M. and Brito, R. M. M. (2001) Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J. Biol. Chem. 276, 27207-27213
  90. Virchow, R. (1854) Zur celluslose-frage. Virchows Arch. 6, 415-426
  91. Tan, S. Y. and Pepys, M. B. (1994) Amyloidosis. Histopathology 25, 403-414
  92. Merlini, G. and Bellotti, V. (2003) Molecular mechanisms of amyloidosis. N. Engl. J. Med. 349, 583-596
  93. Knowles, T. P., Fitzpatrick, A. W., Meehan, S., Mott, H. R., Vendruscolo, M., Dobson, C. M. and Welland, M. E. (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900-1903
  94. Conway, K. A., Harper, J. D. and Lansbury, P. T. Jr. (1998) Accelerated in vitro fibril formation by a mutant a-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318-1320
  95. Bellotti, V., Mangione, P. and Merlini, G. (2000) Review: Immunoglobulin light chain amyloidosis - The archetype of structural and pathogenic variability. J. Struct. Biol. 130, 280-289
  96. Jarrett, J. T. and Lansbury, P. T. Jr. (1993) Seeding 'onedimensional crystallization' of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055-1058
  97. Bates, G. (2003) Huntingtin aggregation and toxicity in Huntington's disease. Lancet 361, 1642-1644
  98. Kelly, J. W., Colon, W., Lai, Z., Lashuel, H. A., McCulloch, J., McCutchen, S. L., Miroy, G. J. and Peterson, S. A. (1997) Transthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid. Adv. Protein. Chem. 50, 161-181
  99. Nuvolone, M., Aguzzi, A. and Heikenwalder, M. (2009) Cells and prions: a license to replicate. FEBS Lett. 583, 2674-2684
  100. Kaylor, J., Bodner, N., Edridge, S., Yamin, G., Hong, D. -P. and Fink, A. L. (2005) Characterization of oligomeric intermediates in a-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F $\alpha$-synuclein. J. Mol. Biol. 353, 357-372
  101. Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. and Lansbury, P. T. Jr. (2002) Amyloid pores from pathogenic mutations. Nature 418, 291
  102. Sunde, M., Serpella, L. C., Bartlama, M., Frasera, P. E., Pepysa, M. B. and Blake, C. C. F. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729-739
  103. Aggeli, A., Bell, M., Boden, N., Keen, J. N., Knowles, P. F., McLeish, T. C. B., Pitkeathly, M. and Radford, S. E. (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric $\beta$-sheet tapes. Nature 386, 259-262
  104. Harris, D. A. and True, H. L. (2006) New insights into prion structure and toxicity. Neuron 50, 353-357
  105. Fandrich, M., Fletcher, M. A. and Dobson, C. M. (2001) Amyloid fibrils from muscle myoglobin. Nature 410, 165-166
  106. Apetri, M. M., Maiti, N. C., Zagorski, M. G., Carey, P. R. and Anderson, V. E. (2006) Secondary structure of a-synuclein oligomers: characterization by Raman and atomic force microscopy. J. Mol. Biol. 355, 63-715
  107. Kayed, R., Bernhagen, J., Greenfield, N., Sweimeh, K., Brunner, H., Voelter, W. and Kapurniotu, A. (1999) Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J. Mol. Biol. 287, 781-796
  108. Teale, F. W. J. (1959) Cleavage of the haem-protein link by acid methylethylketone. Biochim. Biophys. Acta. 35, 543
  109. Naiki, H. and Gejyo, F. (1999) Kinetic analysis of amyloid fibril formation. Methods Enzymol. 309, 305-318
  110. Fowler, D. M., Koulov, A. V., Alory-Jost, C., Marks, M. S., Balch, W. E. and Kelly, J. W. (2006) Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6
  111. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. and Goedert, M. (1998) $\alpha$-Synuclein in filamentous inclusions of Lewy bodies form Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. U.S.A. 95, 6469-6473
  112. Artymiuk, P. J. and Blake, C. C. F. (1981) Refinement of human lysozyme at 1.5 A resoution analysis of nonbonded and hydrogen-bond interactions. J. Mol. Biol. 152, 737-762
  113. Shibayama, Y., Joseph, K., Nakazawa, Y., Ghebreihiwet, B., Peerschke, E. I. B. and Kaplan, A. P. (1999) Zinc-dependent activation of the plasma kinin-forming cascade by aggregated $\beta$ amyloid protein. Clin. Immunol. 90, 89-99
  114. Park, J. -W., Ahn, J. S., Lee, J. -H., Bhak, G., Jung, S. and Paik, S. R. (2008) Amyloid fibrillar meshwork formation of ion-induced oligomeric species of A$\beta$40 with phthalocyanine tetrasulfonate and its toxic consequences. Chem. Bio. Chem. 9, 2602-2605
  115. Uversky, V. N., Li, J. and Fink, A. L. (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human $\alpha$-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure. J. Biol. Chem. 276, 44284-44296
  116. Petkova, A. T., Leapman, R. D., Guo, Z., Yau, W. -M., Mattson, M. P. and Tycko, R. (2005) Self-propagating, molecular-level polymorphism in Alzheimer's $\beta$-amyloid fibrils. Science 307, 262-265
  117. Ding, T. T., Lee, S. -J., Rochet, J. -C. and Lansbury, P. T. Jr. (2002) Annular a-synuclein protofibrils are produced when spherical protofibrils are incubated in solution of bound to brain-derived membranes. Biochemistry 41, 10209-10217

Cited by

  1. Exploring the binding sites and proton diffusion on insulin amyloid fibril surfaces by naphthol-based photoacid fluorescence and molecular simulations vol.7, pp.1, 2017,
  2. The Model of Amyloid Aggregation of Escherichia coli RNA Polymerase σ 70 Subunit Based on AFM Data and In Vitro Assays vol.66, pp.3, 2013,
  3. Misfolding and Amyloid Aggregation of Apomyoglobin vol.14, pp.7, 2013,
  4. Amyloidogenic Protein of α-Synuclein vol.33, pp.2, 2013,
  5. Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models vol.18, pp.3, 2012,
  6. Self-assembly and sequence length dependence on nanofibrils of polyglutamine peptides vol.57, 2016,
  7. Suppression of dynamin GTPase decreases α-synuclein uptake by neuronal and oligodendroglial cells: a potent therapeutic target for synucleinopathy vol.7, pp.1, 2012,
  8. A Concise Review of Amyloidosis in Animals vol.2012, 2012,
  9. Mysterious oligomerization of the amyloidogenic proteins vol.277, pp.14, 2010,
  10. Amyloid in skin and brain: What′s the link? vol.19, pp.11, 2010,
  11. Auramine-O as a Fluorescence Marker for the Detection of Amyloid Fibrils vol.116, pp.45, 2012,
  12. Macromolecular Crowding as a Suppressor of Human IAPP Fibril Formation and Cytotoxicity vol.8, pp.7, 2013,
  13. Protein aggregation: Mechanisms and functional consequences vol.44, pp.9, 2012,
  14. Advances in electrochemical detection for study of neurodegenerative disorders vol.405, pp.17, 2013,
  15. The Physical Properties and Self-Assembly Potential of the RFFFR Peptide vol.17, pp.21, 2016,
  16. Kinetics of Amyloid Aggregation: A Study of the GNNQQNY Prion Sequence vol.8, pp.11, 2012,
  17. Fibril Film Formation of Pseudoenantiomeric Oxymethylenehelicene Oligomers at the Liquid-Solid Interface: Structural Changes, Aggregation, and Discontinuous Heterogeneous Nucleation vol.21, pp.49, 2015,
  18. A Novel In Vitro CypD-Mediated p53 Aggregation Assay Suggests a Model for Mitochondrial Permeability Transition by Chaperone Systems vol.428, pp.20, 2016,
  19. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway vol.7, pp.1, 2016,
  20. Kutane Amyloidosen vol.62, pp.1, 2011,
  21. Protein-Based SERS Technology Monitoring the Chemical Reactivity on an α-Synuclein-Mediated Two-Dimensional Array of Gold Nanoparticles vol.27, pp.21, 2011,
  22. Assays for α-synuclein aggregation vol.53, pp.3, 2011,
  23. Application and use of differential scanning calorimetry in studies of thermal fluctuation associated with amyloid fibril formation vol.5, pp.3, 2013,
  24. Characterization of β2-microglobulin conformational intermediates associated to different fibrillation conditions vol.46, pp.8, 2011,
  25. Ubiquitous Amyloids vol.166, pp.7, 2012,
  26. A New Face for Old Antibiotics: Tetracyclines in Treatment of Amyloidoses vol.56, pp.15, 2013,
  27. Fibrillation Mechanism of a Model Intrinsically Disordered Protein Revealed by 2D Correlation Deep UV Resonance Raman Spectroscopy vol.13, pp.5, 2012,
  28. Role of oligomers in the amyloidogenesis of primary cutaneous amyloidosis vol.65, pp.5, 2011,
  29. Formation of low-dimensional crystalline nucleus region during insulin amyloidogenesis process vol.419, pp.2, 2012,
  30. Amyloid fibrils compared to peptide nanotubes vol.1840, pp.9, 2014,
  31. Synthesis and in vitro characterization of some benzothiazole- and benzofuranone-derivatives for quantification of fibrillar aggregates and inhibition of amyloid-mediated peroxidase activity vol.22, pp.1, 2013,
  32. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides vol.149, 2017,
  33. Effects of pH on aggregation kinetics of the repeat domain of a functional amyloid, Pmel17 vol.107, pp.50, 2010,
  34. A computational study of the self-assembly of the RFFFR peptide vol.17, pp.44, 2015,
  35. Mechanisms of amyloid fibril formation - focus on domain-swapping vol.278, pp.13, 2011,
  36. Natural Biomolecules and Protein Aggregation: Emerging Strategies against Amyloidogenesis vol.13, pp.12, 2012,
  37. A Generic Crystallization-like Model That Describes the Kinetics of Amyloid Fibril Formation vol.287, pp.36, 2012,
  38. Role of Metal Ions in the Self-assembly of the Alzheimer’s Amyloid-β Peptide vol.52, pp.21, 2013,
  39. Photoconductivity of Pea-Pod-Type Chains of Gold Nanoparticles Encapsulated within Dielectric Amyloid Protein Nanofibrils of α-Synuclein vol.123, pp.6, 2011,
  40. Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors vol.32, pp.10, 2014,
  41. Proteomic Screening for Amyloid Proteins vol.9, pp.12, 2014,
  42. Heme binding site in apomyoglobin may be effectively targeted with small molecules to control aggregation vol.45, pp.2, 2013,
  43. Amyloid Fibril Formation by the Chain B Subunit of Monellin Occurs by a Nucleation-Dependent Polymerization Mechanism vol.53, pp.7, 2014,
  44. Covalent Structural Changes in Unfolded GroES That Lead to Amyloid Fibril Formation Detected by NMR vol.286, pp.24, 2011,
  45. Photoconductivity of Pea-Pod-Type Chains of Gold Nanoparticles Encapsulated within Dielectric Amyloid Protein Nanofibrils of α-Synuclein vol.50, pp.6, 2011,
  46. Interaction of polymers with amyloidogenic peptides vol.67, pp.1, 2017,
  47. Morphological Evaluation of Meta-stable Oligomers of α-Synuclein with Small-Angle Neutron Scattering vol.8, pp.1, 2018,
  48. Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases vol.55, pp.9, 2018,
  49. Phase transformations of bovine serum albumin: Evidences from Rayleigh-Brillouin light scattering pp.03770486, 2019,