Effect of Different Rumen-degradable Carbohydrates on Rumen Fermentation, Nitrogen Metabolism and Lactation Performance of Holstein Dairy Cows

DOI QR코드

DOI QR Code

Khezri, A.;Rezayazdi, K.;Mesgaran, M. Danesh;Moradi-Sharbabk, M.

  • 투고 : 2008.08.01
  • 심사 : 2008.12.05
  • 발행 : 2009.05.01

초록

Four multiparous lactating Holstein cows fitted with rumen cannulae were fed diets varying in the amount and source of rumen-degradable carbohydrates (starch vs. sucrose) to examine their effects on rumen fermentation, nitrogen metabolism and lactation performance. A $4{\times}4$ Latin square with four diets and four periods of 28 days each was employed. Corn starch and sucrose were added to diets and corn starch was replaced with sucrose at 0 (0 S), 2.5 (2.5 S), 5.0 (5.0 S) 7.5% (7.5 S) of diet dry matter in a total mixed ration (TMR) containing 60% concentrate and 40% forage (DM basis). Replacing corn starch with sucrose did not affect (p>0.05) ruminal pH which averaged 6.41, but the ruminal pH for 7.5 S decreased more rapidly at 2 h after morning feeding compared with other treatments. Sucrose reduced ($p{\leq}0.05$) ruminal $NH_3-N$ concentration (13.90 vs. 17.09 mg/dl) but did not affect peptide-N concentration. There was no dietary effect on total volatile fatty acids (110.53 mmol/L) or the acetate to propionate ratio (2.72). No differences (p>0.05) in molar proportion of most of the individual VFA were found among diets, except for the molar proportion of butyrate that was increased ($p{\leq}0.05$) with the inclusion of sucrose. Total branched chain volatile fatty acids tended to increase ($p{\geq}0.051$) for the control treatment (0 S) compared with the 7.5 S treatment. Dry matter intake, body weight changes and digestibility of DM, OM, CP, NDF and ADF were not affected by treatments. Sucrose inclusion in the total mixed ration did not affect milk yield, but increased milk fat and total solid percentage ($p{\leq}0.05$). Sucrose tended ($p{\geq}0.063$) to increase milk protein percentage (3.28 vs. 3.05) and reduced ($p{\leq}0.05$) milk urea nitrogen concentration (12.75 vs. 15.48 mg/dl), suggesting a more efficient utilization of the rapidly available nitrogen components in the diet and hence improving nitrogen metabolism in the rumen.

키워드

Sucrose;Rumen Degradable Carbohydrates;Rumen Fermentation;Nitrogen Metabolism;Lactation Performance

참고문헌

  1. Ariza, P., A. Bach, M. D. Stern and M. B. Hall. 2001. Effects of carbohydrates from citrus pulp and hominy feed on microbial fermentation in continuous culture. J. Anim. Sci. 79:2713-2718
  2. Hristov, A. N. and J.-P. Jouany. 2005. Factors affecting the efficiency of nitrogen utilization in the rumen. In: Nitrogen and phosphorus nutrition of cattle and environment (Ed. A. N. Hristov and E. Pfeffer). CAB International, Wallingford, UK. pp. 117-166
  3. Jones, D. F., W. H. Hoover and T. K. Miller-Webster. 1998. Effects of concentrations of peptides on microbial metabolism in continuous culture. J. Anim. Sci. 76:611-616
  4. National Research Council 2001. Nutrient Requirements of Dairy Cattle. 7th rev. edn. Natl. Acad. Sci., Washington, DC
  5. Nombekela, S. W. and M. R. Murphy. 1995. Sucrose supplementation and feed intake of dairy cows in early lactation. J. Dairy Sci. 78:880-885 https://doi.org/10.3168/jds.S0022-0302(95)76701-7
  6. Pate, F. 1983. Molasses in beef nutrition. Natl. Feed Ingredients Assoc., W. Des Moines, IA
  7. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32:199-208 https://doi.org/10.1079/BJN19740073
  8. Supelco, Inc. 1975. GC Separation of VFA C2-C5. Tech. Bull. 749D. Supelco, Inc., Bellefonte, PA
  9. Varga, G. A. 2003. Soluble carbohydrates for lactating dairy cows. In: Proceedings of tri state dairy nutrtion. Conferance., Fort Wayne, IN. p. 59
  10. Wallace, R. J. 1996. Ruminal microbial metabolism of peptides and amino acids. J. Nutr. 126:1326S-1334S https://doi.org/10.1016/S0377-8401(96)01067-X
  11. Miron, J., E. Yosef, D. Ben-Ghedalia, L. E. Chase, D. E. Bauman and R. Solomon. 2002. Digestibility by dairy cows of monosaccharide constituents in total mixed ration containing citrus pulp. J. Dairy Sci. 85:89-94 https://doi.org/10.3168/jds.S0022-0302(02)74056-3
  12. Van Keulen, J. and B. A. Young. 1977. Evaluation of acidinsoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 44:282-287
  13. Sniffen, C. J., J. D. O'Connor, P. J. Van Soest, D. G. Fox and J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577
  14. Tamminga, S. 1992. Nutrition management of dairy cows as a contribution to pollution control. J. Dairy Sci. 75:345-357 https://doi.org/10.3168/jds.S0022-0302(92)77770-4
  15. Lee, M. R. F., R. J. Merry, D. R. Davies, J. M. Moorby, M. O. Humphreys, M. K. Theodorou, J. C. MacRae and N. D. Scollan. 2003. Effect of increasing availability of watersoluble carbohydrates on in vitro rumen fermentation. Anim. Feed Sci. Technol. 104:59-70 https://doi.org/10.1016/S0377-8401(02)00319-X
  16. AOAC. 1999. Official methods of analysis. 17th edn. Association of Official Analytical Chemists, Arlington, Virginia
  17. Hall, M. B. and C. Herejk. 2001. Differences in yields of microbial crude protein from in vitro fermentation of carbohydrates. J. Dairy Sci. 84:2486-2493 https://doi.org/10.3168/jds.S0022-0302(01)74699-1
  18. Khalili, H. and P. Huhtanen. 1991. Sucrose supplements in cattle given grass silage-based diet. 2. Digestion of cell wall carbohydrates. Anim. Feed Sci. Technol. 33:263-273 https://doi.org/10.1016/0377-8401(91)90066-2
  19. SAS Institute Inc. 2000. SAS/STAT User's Guide: Version 8.1th edn. SAS Institute Inc., Cary, North Carolina
  20. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3588-3597
  21. Allison, M. J. 1970. Nitrogen metabolism of ruminal microorganisms. In: Physiology of digestion and metabolism in the ruminant (Ed. A. T. Phillipson), Oriel Press, Newcastle upon Tyne, UK. p. 456
  22. Huhtanen, P. and H. Khalili. 1991. Sucrose supplements in cattle given grass silage-based diet. 3. Rumen pool size and digestion kinetics. Anim. Feed Sci. Technol. 33:275-287 https://doi.org/10.1016/0377-8401(91)90066-2
  23. Mould, F. L., E. R. $\phi$rskov and S. O. Mann. 1984. Associative effects of mixed feeds. I. Effect of type and level of supplementation and the influence on the rumen fluid pH on cellulolysis in vivo and dry matter digestion on various roughages. Anim. Feed Sci. Technol. 10:15-30 https://doi.org/10.1016/0377-8401(83)90003-2
  24. Mesgaran, M. D. and D. S. Parker. 1995. The effect of dietary protein and energy sources on ruminal accumulation of low molecular weight peptides in sheep. Anim. Sci. 60:535
  25. Vallimont, J. E., F. Bargo, T. W. Cassidy, N. D. Luchini, G. A. Broderick and G. A. Varga. 2004. Effects of replacing dietary starch with sucrose on ruminal fermentation and nitrogen metabolism in continuous culture. J. Dairy Sci. 87:4221-4229 https://doi.org/10.3168/jds.S0022-0302(04)73567-5
  26. Van Soest, P. J. 1994. Nutritional ecology of the ruminant. 2nd Ed. Cornell Univ. Press, Ithaca, NY
  27. Broderick, G. A., N. D. Luchini, W. J. Smith, S. Reynal, G. A. Varga and V. A. Ishler. 2000. Effect of replacing dietary starch with sucrose on milk production in lactating dairy cows. J. Dairy Sci. 83(Suppl. 1):248(Abstr.)
  28. Chen, G., J. B. Russell and C. J. Sniffen. 1987. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J. Dairy Sci. 70:1211-1219 https://doi.org/10.3168/jds.S0022-0302(87)80133-9
  29. Leng, R. A. 1970. Formation and production of volatile fatty acids in the rumen. In: Physiology of digestion and metabolism in the ruminant (Ed. A T. Phillipson). Oriel Press, Newcastle upon Tyne, UK. pp. 406-421
  30. Ordway, R. S., V. A. Ishler and G. A. Varga. 2002. Effects of sucrose supplementation on dry matter intake, milk yield, and blood metabolites of periparturient Holstein dairy cows. J. Dairy Sci. 85:879-888 https://doi.org/10.3168/jds.S0022-0302(02)74146-5
  31. Heldt, J. S., R. C. Cochran, C. P. Mathis, B. C. Woods, K. C. Olson, E. C. Titgemeyer, T. G. Nagaraja, E. S. Vanzant and D. E. Johnson. 1999. Effects of level and source of carbohydrate and level of degradable protein on intake and digestion of lowquality tallgrass-prairie hay by beef steers. J. Anim. Sci. 77:2846-2854
  32. Robles, V., L. A. González, A. Ferret, X. Manteca and S. Calsamiglia. 2007. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed highconcentrate diets. J. Anim. Sci. 85:2538-2547 https://doi.org/10.2527/jas.2006-739
  33. Sannes, R. A., M. A. Messman and D. B. Vagnoni. 2002. Form of rumen-degradable carbohydrate and nitrogen on microbial protein synthesis and protein efficiency of dairy cows. J. Dairy Sci. 85:900-908 https://doi.org/10.3168/jds.S0022-0302(02)74148-9
  34. Crook, W. M. and W. E. Simpson. 1971. Determination of ammonium in Kjeldahl digest of crops by an automated procedure. J. Sci. Food Agric. 22:9 https://doi.org/10.1002/jsfa.2740220104
  35. Strobel, H. J. and J. B. Russell. 1986. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria. J. Dairy Sci. 69:2941-2947 https://doi.org/10.3168/jds.S0022-0302(86)80750-0

피인용 문헌

  1. 1. Ruminal fermentation, nutrient digestibility and microbial protein synthesis in sheep fed diets with different levels of date pulp vol.57, pp.4, 2017, doi:10.5713/ajas.2009.80426
  2. 2. In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis pp.1869-2044, 2017, doi:10.5713/ajas.2009.80426