Thermodynamic Analysis of DME Steam Reforming for Hydrogen Production

수소제조를 위한 DME 수증기 개질반응의 열역학적 특성

  • Park, Chan-Hyun (Department of Chemical Engineering, Dankook University) ;
  • Kim, Kyoung-Suk (Department of Chemical Engineering, Dankook University) ;
  • Jun, Jin-Woo (Department of Chemical Engineering, Dankook University) ;
  • Cho, Sung-Yul (Department of Chemical Engineering, Dankook University) ;
  • Lee, Yong-Kul (Department of Chemical Engineering, Dankook University)
  • 박찬현 (단국대학교 화학공학과) ;
  • 김경숙 (단국대학교 화학공학과) ;
  • 전진우 (단국대학교 화학공학과) ;
  • 조성열 (단국대학교 화학공학과) ;
  • 이용걸 (단국대학교 화학공학과)
  • Received : 2009.01.10
  • Accepted : 2009.02.10
  • Published : 2009.04.10

Abstract

This study is purposed to analyze thermodynamic properties on the hydrogen production by dimethyl ether steam reforming. Various reaction conditions of temperatures (300~1500 K), feed compositions (steam/carbon = 1~7), and pressures (1, 5, 10 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 550 K. An increase of steam to carbon ratio (S/C) in feed mixture over 1.5 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.

References

  1. A. Demirbas, Energy, Convers. Manage., 49, 2106 (2008) https://doi.org/10.1016/j.enconman.2008.02.020
  2. J. A. Torres, J. Llorca, A. Casanovas, M. Dom$\acute{i}$nguez, J. Salvad\acute{o}, and D. Montan\acute{e}; J. Power Sources, 169, 158 (2007) https://doi.org/10.1016/j.jpowsour.2007.01.057
  3. L. Huang, J. Xie, R. Chen, D. Chu, W. Chu, and A. T. Hsu, Int. J. Hydrogen Energy, 33, 7448 (2008) https://doi.org/10.1016/j.ijhydene.2008.09.062
  4. G. Rabenstein and V. Hacker, J. Power Sources, 185, 1293 (2008) https://doi.org/10.1016/j.jpowsour.2008.08.010
  5. K. Essaki, T. Muramatsu, and M. Kato, Int. J. Hydrogen Energy, 33, 6612 (2008) https://doi.org/10.1016/j.ijhydene.2008.08.025
  6. K. Faungnawakij, R. Kikuchi, and K. Eguchi, J. Power Sources, 164, 73 (2007) https://doi.org/10.1016/j.jpowsour.2006.09.072
  7. T. A. Semelsberger and R. L. Borup, J. Power Sources, 155, 340 (2006) https://doi.org/10.1016/j.jpowsour.2005.04.031
  8. K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, R. Kikuchi, and K. Eguchi, Appl. Catal., B, 74, 144 (2007) https://doi.org/10.1016/j.apcatb.2007.02.010
  9. K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, and K. Eguchi, Appl. Catal., A, 341, 139 (2008) https://doi.org/10.1016/j.apcata.2008.02.039
  10. S. Adhikari, S. Fernando, S. R. Gwaltney, S. D. Filip To, R. M. Bricka, P. H. Steele, and A. Haryanto, Int. J. Hydrogen Energy, 32, 2875 (2007) https://doi.org/10.1016/j.ijhydene.2007.03.023
  11. C. C. R. S. Rossi, C. G. Alonso, O. A. C. Antunes, L. Cardozo- Filho, and R. Guirardello, Int. J. Hydrogen Energy, In Press
  12. A. Casanovas, M. Dom$\acute{i}$nguez, C. Ledesma, E. L$\acute{o}$pez, and J. Llorca, Catal. Today, In Press
  13. J. Rass-Hansen, R. Johansson, M. Møller, and C. H. Christensen, Int. J. Hydrogen Energy, 33, 4547 (2008) https://doi.org/10.1016/j.ijhydene.2008.06.020