Adsorption of Uranium (VI) Ion on Synthetic Resin Adsorbent with Styrene Hazardous Materials

Styrene 위험물을 포함한 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착

  • Received : 2009.01.06
  • Accepted : 2009.02.10
  • Published : 2009.04.10

Abstract

Resins were synthesized by mixing 1-aza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) and divinylbenzene (DVB) copolymer with crosslinkage of 1%, 2%, 8%, and 16% by substitution reaction. The characteristic of these resins was confirmed by content of chlorine, element analysis, thermogravimetric analysis (TGA), surface area (BET), and IR-spectroscopy. The effects of pH, time, dielectric constant of solvent and crosslinkage on adsorption of metal ion by the synthetic resin adsorbent were investigated. The metal ion showed a fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in an increasing order of uranium $(UO_2^{2+})$ > lead $(Pb^{2+})$ > chromium $(Cr^{3+})$ ion. The adsorption was in the order of 1%, 2%, 8%, and 16% crosslinkage resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

References

  1. P. G. Grimslery, L. F. Lindoy, H. C. Lip, R. J. Smith, and J. T. Baker, Aust. J. Chem., 30, 2095 (1977) https://doi.org/10.1071/CH9772095
  2. M. A. Ahearn, J. Kim, A. J. Leong, L. F. Lindoy, G. V. Meehan, and O. A. Mattews, J. Chem. Soc., Dalton Trans., 3591 (1996)
  3. J. K. Choi, H. S. Yang, and Y. C. Noh, J. Korean Ind. Eng. Chem., 12, 730 (2001)
  4. S. M. Howdle, K. Jerabek, V. Leocorbo, P. C. Marr, and D. C. Sherrington, Polymer, 41, 7272 (2000)
  5. G. Bombieri and G. Depaoli, J. Chem. Acta., 18, 123 (1976)
  6. T. Hayashita, J. H. Lee, S. Chem, and R. A. Bartsch, Anal. Chem., 63, 1844 (1991) https://doi.org/10.1021/ac00017a032
  7. K. S. Choi, K. S. Joe, S. H. Han, and K. S. Song, Anal. Sci. & Tech., 21, 397 (2008)
  8. Y. G. Ha, J. Kor. Chem. Soc., 23, 136 (1979)
  9. K. S. Huh and S. G. Sin, J. Korean Ind. Eng. Chem., 9, 680 (1998)
  10. J. S. Lee and B. S. Choi, Anal. Sci. & Tech., 21, 272 (2008)
  11. H. K. Frensdorff, J. Am. Chem. Soc., 93, 4684 (1971) https://doi.org/10.1021/ja00748a006
  12. L. F. Lindoy, K. R. Adam, D. S. Bladwine, A. Bashall, M. McPartlin, and H. R. Powell, J. Chem. Soc., Dalton Trans., 237 (1994)
  13. H. D. Jeong, D. S. Kim, and K. I. Kim, J. Korean Ind. Eng. Chem., 16, 123 (2005)
  14. E. Blasius and K. P. Janzen, Pure & Appl. Chem., 54, 2115 (1982) https://doi.org/10.1351/pac198254112115
  15. M. Y. Suh, T. Y. Eom, I. S. Suh, and S. J. Kim, Bull. Kor. Chem. Soc., 8, 366 (1987)
  16. K. W. Chi, Y. S. Ahn, K. T. Shim, H. Huh, and J. S. Ahn, Bull. Kor. Chem. Soc., 23, 688 (2002) https://doi.org/10.5012/bkcs.2002.23.5.688
  17. Y. Marcus, Introduction to liquid state chemistry, 250, John Wiley & Sons (1977)
  18. S. K. Park and J. T. Kim, J. Korean Ind. Eng. Chem., 13, 765 (2002)
  19. H. Egawa, T. Nonaka, and M. Ikari, J. Appl. Poly. Sci., 29, 2045 (1984) https://doi.org/10.1002/app.1984.070290613
  20. C. J. Pederson, J. Am. Chem. Soc., 92, 386 (1970) https://doi.org/10.1021/ja00705a605