DOI QR코드

DOI QR Code

Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells

  • Zhou, Jue-Yu (Institute of Genetic Engineering, Nanfang Hospital, Southern Medical University) ;
  • Ma, Wen-Li (Institute of Genetic Engineering, Nanfang Hospital, Southern Medical University) ;
  • Liang, Shuang (Institute of Genetic Engineering, Nanfang Hospital, Southern Medical University) ;
  • Zeng, Ye (Department of Stomatology, Nanfang Hospital, Southern Medical University) ;
  • Shi, Rong (Institute of Genetic Engineering, Nanfang Hospital, Southern Medical University) ;
  • Yu, Hai-Lang (Institute of Genetic Engineering, Nanfang Hospital, Southern Medical University) ;
  • Xiao, Wei-Wei (Institute of Genetic Engineering, Nanfang Hospital, Southern Medical University) ;
  • Zheng, Wen-Ling (Southern China Genomics Research Center)
  • Published : 2009.09.30

Abstract

Cell cycle progression is regulated by both transcriptional and post-transcriptional mechanisms. MicroRNAs (miRNAs) emerge as a new class of small non-coding RNA regulators of cell cycle as recent evidence suggests. It is hypothesized that expression of specific miRNAs oscillates orderly along with cell cycle progression. However, the oscillated expression patterns of many candidate miRNAs have yet to be determined. Here, we describe miRNA expression profiling in double-thymidine synchronized HeLa cells as cell cycle progresses. Twenty-five differentially expressed miRNAs were classified into five groups based on their cell cycle-dependent expression patterns. The cyclic expression of six miRNAs (miR-221, let-7a, miR-21, miR-34a, miR-24, miR-376b) was validated by real-time quantitative RT-PCR (qRT-PCR). These results suggest that specific miRNAs, along with other key factors are required for maintaining and regulating proper cell cycle progression. The study deepens our understanding on cell cycle regulation.

References

  1. Cho, R. J., Huang, M., Campbell, M. J., Dong, H., Steinmetz, L., Sapinoso, L., Hampton, G., Elledge, S. J., Davis, R. W., and Lockhart, D. J. (2001) Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27, 48-54 https://doi.org/10.1038/83751
  2. Bar-Joseph, Z., Siegfried, Z., Brandeis, M., Brors, B., Lu, Y., Eils, R., Dynlacht, B. D., and Simon, I. (2008) Genomewide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc. Natl. Acad. Sci. U. S. A. 105, 955-960 https://doi.org/10.1073/pnas.0704723105
  3. Shedden, K., and Cooper, S. (2002) Analysis of cell-cyclespecific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc. Natl. Acad. Sci. U. S. A. 99, 4379-4384 https://doi.org/10.1073/pnas.062569899
  4. Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A., Alexander, K. E., Matese, J. C., Perou, C. M., Hurt, M. M., Brown, P. O., and Botstein, D. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977-2000 https://doi.org/10.1091/mbc.02-02-0030.
  5. Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582, 1564-1568 https://doi.org/10.1016/j.febslet.2008.03.057
  6. Medina, R., Zaidi, S. K., Liu, C. G., Stein, J. L., van Wijnen, A. J., Croce, C. M., and Stein, G. S. (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res. 68, 2773-2780 https://doi.org/10.1158/0008-5472.CAN-07-6754
  7. Ivanovska, I., Ball, A. S., Diaz, R. L., Magnus, J. F., Kibukawa, M., Schelter, J. M., Kobayashi, S. V., Lim, L., Burchard, J., Jackson, A. L., Linsley, P. S., and Cleary, M. A. (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol. Cell Biol. 28, 2167-2174 https://doi.org/10.1128/MCB.01977-07
  8. Linsley, P. S., Schelter, J., Burchard, J., Kibukawa, M., Martin, M. M., Bartz, S. R., Johnson, J. M., Cummins, J. M., Raymond, C. K., Dai, H., Chau, N., Cleary, M., Jackson, A. L., Carleton, M., and Lim, L. (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell Biol. 27, 2240-2252 https://doi.org/10.1128/MCB.02005-06
  9. Carleton, M., Cleary, M. A., and Linsley, P. S. (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6, 2127- 2132 https://doi.org/10.4161/cc.6.17.4641
  10. Urbani, L., Sherwood, S. W., and Schimke, R. T. (1995) Dissociation of nuclear and cytoplasmic cell cycle progression by drugs employed in cell synchronization. Exp. Cell Res. 219, 159-168 https://doi.org/10.1006/excr.1995.1216
  11. Chivukula, R. R., and Mendell, J. T. (2008) Circular reasoning: microRNAs and cell-cycle control. Trends Biochem. Sci. 33, 474-481 https://doi.org/10.1016/j.tibs.2008.06.008
  12. Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G. V., Ciafre, S. A., and Farace, M. G. (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 282, 23716-23724 https://doi.org/10.1074/jbc.M701805200
  13. Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J., and Zhang, C. (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ. Res. 104, 476-487 https://doi.org/10.1161/CIRCRESAHA.108.185363
  14. Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G. A., Grazi, G. L., Giovannini, C., Croce, C. M., Bolondi, L., and Negrini, M. (2008) MiR- 221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27, 5651-5661 https://doi.org/10.1038/onc.2008.178
  15. Visone, R., Russo, L., Pallante, P., De Martino, I., Ferraro, A., Leone, V., Borbone, E., Petrocca, F., Alder, H., Croce, C. M., and Fusco, A. (2007) MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr. Relat. Cancer 14, 791-798 https://doi.org/10.1677/ERC-07-0129
  16. Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y. Y. (2007) miR-21-mediated tumor growth. Oncogene 26, 2799-2803 https://doi.org/10.1038/sj.onc.1210083
  17. Frankel, L. B., Christoffersen, N. R., Jacobsen, A., Lindow, M., Krogh, A., and Lund, A. H. (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026-1033 https://doi.org/10.1074/jbc.M707224200
  18. Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K. Jacob, S. T., and Patel, T. (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647-658 https://doi.org/10.1053/j.gastro.2007.05.022
  19. Bommer, G. T., Gerin, I., Feng, Y., Kaczorowski, A. J., Kuick, R., Love, R. E., Zhai, Y., Giordano, T. J., Qin, Z. S., Moore, B. B., MacDougald, O. A., Cho, K. R., and Fearon, E. R. (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17, 1298-1307 https://doi.org/10.1016/j.cub.2007.06.068
  20. Papagiannakopoulos, T., Shapiro, A., and Kosik, K. S. (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 68, 8164-8172 https://doi.org/10.1158/0008-5472.CAN-08-1305
  21. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906 https://doi.org/10.1038/35002607
  22. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D., and Slack, F. J. (2005) RAS is regulated by the let-7 microRNA family. Cell 120, 635-647 https://doi.org/10.1016/j.cell.2005.01.014
  23. Hebert, C., Norris, K., Scheper, M. A., Nikitakis, N., and Sauk, J. J. (2007) High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol. Cancer 6, 5 https://doi.org/10.1186/1476-4598-6-5
  24. Koscianska, E., Baev, V., Skreka, K., Oikonomaki, K., Rusinov, V., Tabler, M., and Kalantidis, K. (2007) Prediction and preliminary validation of oncogene regulation by miRNAs. BMC. Mol. Biol. 8, 79 https://doi.org/10.1186/1471-2199-8-79
  25. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R., and Jacks, T. (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673-677 https://doi.org/10.1038/ng2003
  26. Boyerinas, B., Park, S. M., Shomron, N., Hedegaard, M. M., Vinther, J., Andersen, J. S., Feig, C., Xu, J., Burge, C. B., and Peter, M. E. (2008) Identification of let-7-regulated oncofetal genes. Cancer Res. 68, 2587-2591 https://doi.org/10.1158/0008-5472.CAN-08-0264
  27. Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom, M., Kelnar, K., Ovcharenko, D., Wilson, M., Wang, X., Shelton, J., Shingara, J., Chin, L., Brown, D., and Slack, F. J. (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67, 7713-7722 https://doi.org/10.1158/0008-5472.CAN-07-1083
  28. Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C. J., Arking, D. E., Beer, M. A., Maitra, A., and Mendell, J. T. (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745-752 https://doi.org/10.1016/j.molcel.2007.05.010
  29. Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., Bentwich, Z., and Oren, M. (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26, 731-743 https://doi.org/10.1016/j.molcel.2007.05.017
  30. Welch, C., Chen, Y., and Stallings, R. L. (2007) MicroRNA- 34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017-5022 https://doi.org/10.1038/sj.onc.1210293
  31. Terasima, T., and Tolmach, L. J. (1963) Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp. Cell Res. 30, 344-362 https://doi.org/10.1016/0014-4827(63)90306-9
  32. Upadhyaya, K. R., Radha, K. S. and Madhyastha, H. K. (2007) Cell cycle regulation and induction of apoptosis by beta-carotene in U937 and HL-60 leukemia cells. J. Biochem. Mol. Biol. 40, 1009-1015 https://doi.org/10.5483/BMBRep.2007.40.6.1009
  33. Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A., and Vingron, M. (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1), S96-104 https://doi.org/10.1093/bioinformatics/18.suppl_1.S96
  34. Wettenhall, J. M., and Smyth, G. K. (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20, 3705-3706 https://doi.org/10.1093/bioinformatics/bth449
  35. Reich, M., Ohm, K., Angelo, M., Tamayo, P., and Mesirov, J. P. (2004) GeneCluster 2.0: an advanced toolset for bioarray analysis. Bioinformatics 20, 1797-1798 https://doi.org/10.1093/bioinformatics/bth138
  36. Pongsomboon, S., Tang, S., Boonda, S., Aoki, T., Hirono, I., Yasuike, M., and Tassanakajon, A. (2008) Differentially expressed genes in Penaeus monodon hemocytes following infection with yellow head virus. BMB Rep. 41, 670-677 https://doi.org/10.5483/BMBRep.2008.41.9.670
  37. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 25, 402-408 https://doi.org/10.1006/meth.2001.1262

Cited by

  1. MicroRNA-let-7a expression is increased in the mesangial cells of NZB/W mice and increases IL-6 productionin vitro vol.46, pp.6, 2013, https://doi.org/10.3109/08916934.2013.773976
  2. Fluorescence activated cell sorting followed by small RNA sequencing reveals stable microRNA expression during cell cycle progression vol.17, pp.1, 2016, https://doi.org/10.1186/s12864-016-2747-6
  3. Are microRNAs key players in epithelial skin cancers? A review focused on basal cell carcinoma and squamous cell carcinoma vol.2014, pp.1, 2014, https://doi.org/10.5339/jlghs.2014.1
  4. Long-lived microRNA-Argonaute complexes in quiescent cells can be activated to regulate mitogenic responses vol.110, pp.1, 2013, https://doi.org/10.1073/pnas.1219958110
  5. MicroRNAs in the Brain: It's Regulatory Role in Neuroinflammation vol.47, pp.3, 2013, https://doi.org/10.1007/s12035-013-8400-3
  6. The novel role of miRNAs for tamoxifen resistance in human breast cancer vol.72, pp.13, 2015, https://doi.org/10.1007/s00018-015-1887-1
  7. Low-cell-number, single-tube amplification (STA) of total RNA revealed transcriptome changes from pluripotency to endothelium vol.15, pp.1, 2017, https://doi.org/10.1186/s12915-017-0359-5
  8. An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells vol.13, pp.1, 2012, https://doi.org/10.1186/1471-2164-13-732
  9. Clinical correlations of miR-21 expression in colorectal cancer patients and effects of its inhibition on DLD1 colon cancer cells vol.27, pp.11, 2012, https://doi.org/10.1007/s00384-012-1461-3
  10. Estrogen receptor beta (ERβ) mediates expression of β-catenin and proliferation in prostate cancer cell line PC-3 vol.430, 2016, https://doi.org/10.1016/j.mce.2016.04.012
  11. On a heuristic point of view concerning the expression of numerous genes during the cell cycle vol.64, pp.1, 2012, https://doi.org/10.1002/iub.571
  12. RNA-directed repair of DNA double-strand breaks vol.32, 2015, https://doi.org/10.1016/j.dnarep.2015.04.017
  13. MicroRNA aberrations: An emerging field for gallbladder cancer management vol.22, pp.5, 2016, https://doi.org/10.3748/wjg.v22.i5.1787
  14. A Novel Intracellular Peptide Derived from G1/S Cyclin D2 Induces Cell Death vol.289, pp.24, 2014, https://doi.org/10.1074/jbc.M113.537118
  15. MicroRNA turnover: when, how, and why vol.37, pp.10, 2012, https://doi.org/10.1016/j.tibs.2012.07.002
  16. On the role of extrinsic noise in microRNA-mediated bimodal gene expression vol.14, pp.4, 2018, https://doi.org/10.1371/journal.pcbi.1006063
  17. Sex-specific associations between telomere length and candidate miRNA expression in placenta vol.16, pp.1, 2018, https://doi.org/10.1186/s12967-018-1627-z
  18. Erythropoietin inhibits chemotherapy-induced cell death and promotes a senescence-like state in leukemia cells vol.10, pp.1, 2019, https://doi.org/10.1038/s41419-018-1274-6