Square wave voltammetric behaviors and determinations of ranitidine·HCl in the pharmaceutical tablets

의약품 정제 중에 함유된 Ranitidine·HCl의 네모파 전압전류법 거동과 정량분석

  • Shin, Soon Ho ;
  • Hahn, Younghee
  • 신순호 ;
  • 한영희
  • Received : 2009.08.24
  • Accepted : 2009.09.21
  • Published : 2009.10.25

Abstract

In order to develop the analytical method for the pharmaceutical tablets containing ranitidine HCl by square wave voltammetry (SWV), $5.00{\times}10^{-5}M$ ranitidine HCl solutions prepared with phosphate buffers of various pH values were investigated by SWV. The well defined main peak due to the electrochemical reduction of $-NO_2$ in the structure of ranitidine moved towards the cathodic direction by -70 mV/pH as the pH values were increased indicating the involvement of hydrogen in its reduction. The calibration curve, the plot of peak currents (Ip) vs. concentrations of ranitidine HCl in the range between $1.00{\times}10^{-7}M$ and $1.00{\times}10^{-5}M$ showed linearity with slopes of $232,530{\mu}A/M$ (pH 6.14), $289,015{\mu}A/M$ (pH 7.07) and $232,843{\mu}A/M$ (pH 8.01). When one pharmaceutical tablet was simply dissolved in the phosphate buffer with a pH value of 6.14 and determined by standard addition method using SWV, the within-day precision study (n=4) resulted in the contents of ranitidine HCl as $171{\pm}2.1mg$ ($102{\pm}1.3%$ of the specified contents, RSD of 1.2%) in a tablet of Curan$^{(R)}$. The inter-day precision for 5 days was 1.1% of RSD. For Zantac$^{(R)}$ the within-day precision study (n=4) showed the contents of ranitidine HCl as $167{\pm}0.8mg$ ($99{\pm}0.5%$ of the specified contents, RSD of 0.5%) in a tablet and the inter-day precision for 5 days was 0.3% of RSD.

Keywords

ranitidineHCl;square wave voltammetry;electrochemical reduction of $-NO_2$

References

  1. A. Khedr, J. chromatogr. B, 862, 175-180(2008) https://doi.org/10.1016/j.jchromb.2007.12.007
  2. P. Norouzi, M. R. Ganjali and P. Daneshgar, J. Pharmacol. Toxicolo. Methods, 55, 289-296(2007) https://doi.org/10.1016/j.vascn.2006.09.001
  3. P. Richter, M. I. Toral and F. Munoz-Vargas, Analyst, 119, 1371-1374(1994) https://doi.org/10.1039/an9941901371
  4. J. A. Squella, L. A. Zuiga, I. Lemus and L. J. Nunez- Vergara, J. Assoc. Off. Anal. Chem., 71, 388-390(1988)
  5. M. S. Kim and Y. Hahn, Arch. Pharm. Res., 30, 255-259(2007) https://doi.org/10.1007/BF02977702
  6. D. Zendelovska and T. Stafilov, J. Pharma. Biomed. Anal., 33, 165-173(2003) https://doi.org/10.1016/S0731-7085(03)00265-6
  7. L. G. Hare, D. S. Mitchel, J. S. Millership, P. S. Collier, J. C. McElnay, M. D. Shields, D. J. Carson and R. Fair, J. Chromatogr. B, 806, 263-269(2004) https://doi.org/10.1016/j.jchromb.2004.04.007
  8. D. A. I. Ashiru, R. Patel and A. W. Basit, J. Chromatogr. B, 860, 235-240(2007) https://doi.org/10.1016/j.jchromb.2007.10.029
  9. Y. Hahn and J.-S. Jeon, J. Kor. Chem. Soc., 36, 552-557(1992)
  10. Y. Gao, Y. Tian, X. Sun, X. B. Yin, Q. Xiang, G. Ma and E. Wang, J. chromatogr. B, 832, 236-240(2006) https://doi.org/10.1016/j.jchromb.2006.01.004
  11. D. C. Harris, 'Quantitative Chemical Analysis', 7th Ed., 86, Freeman, U.S.A., 2007
  12. D. C. Harris, 'Quantitative Chemical Analysis', 7th Ed., 90, Freeman, U.S.A., 2007
  13. Revision of Committee, 'The United States Pharmacopoeia', 24th Ed., 1462-1466, The United States Pharmacopoeial Convention, Inc., Washington, D. C., U.S.A.(2005)
  14. M. D. Zammarren´o, J. H. Meˇndez and A. S. Perez, Anal. Chim. Acta, 176, 279-284(1985) https://doi.org/10.1016/S0003-2670(00)81656-6