Synthesis of New 2,4-Disubstituted Thiazoles and 2-(Allylidenehydrazono)-thiazolo[5,4-b]quinoxaline Derivatives

새로운 2,4-이치환된 티아졸들과 2-(Allylidenehydrazono)-thiazolo[5,4-b]quinoxaline 유도체들의 합성

  • Kim, Jong-Geun (Department of Chemistry, Kunsan National University) ;
  • Bae, Sun Kun (Department of Chemistry, Kunsan National University)
  • Received : 2008.09.08
  • Accepted : 2009.02.05
  • Published : 2009.04.10

Abstract

A series of allylidenethiosemicarbazone compounds (2a~2e) were obtained in 45~85% by condensing (E)-3-(aryl)acrylaldehyde (1a~1e) with thiosemicarbazide. Theses compounds on treatment of 2,4'-dibromoacetophenone and 2,3-dichloroquinoxaline yielded 2,4-disubstituted thiazoles (3a~3e) and 2-[(E)-3-(aryl)allylidenehydrazono]thiazolo[5,4-b]quinoxaline (4a~4e) in good yield respectively. The structures of all the newly synthesized compounds were identified by IR and $^1H-NMR$ spectral data.

References

  1. X. H. Gu, X. Z. Wan, and B. Jiang, Bioorg. Med. Chem. Lett., 9, 569 (1999) https://doi.org/10.1016/S0960-894X(99)00037-2
  2. S. E. Kazzouli, S. Berteina-Raboin, A. Mouaddib, and G. Guillaumet, Tetrahedron Lett., 43, 3193 (2002) https://doi.org/10.1016/S0040-4039(02)00471-9
  3. K. D. Hargrave, F. K. Hess, and J. T. Olive, J. Med. Chem., 26, 1158 (1983) https://doi.org/10.1021/jm00362a014
  4. W. C. Patt, H. W. Hamilton, M. D. Taylor, M. J. Rayan, D. G. Taylor Jr., C. J. C. Connolly, A. M. Doberty, S. R. Klutchko, I. Sircar, and S. J. C. Olson, J. Med. Chem., 35, 2562 (1992) https://doi.org/10.1021/jm00092a006
  5. P. K. Sharma, S. N. Sawnhney, A. Gupta, G. B. Sinh, and S. Bani, Indian J. Chem., 33, 376 (1990)
  6. J. C. Jaen, L. D. Wise, B. W. Caprathe, H. Tecle, S. Bergmeie, C. C. Humblet, T. G. Heffner, L. T. Meltzner, and T. A. Pugsley, J. Med. Chem., 33, 311 (1990) https://doi.org/10.1021/jm00163a051
  7. P. Vicini, A. Geronikaki, K. Anastsia, M. Incerti, and F. Zani, Bioorg. Med. Chem., 14, 3859 (2006) https://doi.org/10.1016/j.bmc.2006.01.043
  8. R. G. Kalkhambkar, G. M. Kulkarni, H. Shivkumar, and R. N. Rao, Eur. J. Med. Chem., 42, 1272 (2007) https://doi.org/10.1016/j.ejmech.2007.01.023
  9. P. X. Franklin, A. D. Pillai, P. D. Rathod, S. Yerande, M. Nivsarkar, K. K. Vasu, and V. Sundarsanam, Eur. J. Med. Chem., 43, 129 (2008) https://doi.org/10.1016/j.ejmech.2007.02.008
  10. P. Karegoudar, M. S. Karthikeyan, D. J. Prasad, M. Hahalinga, B. S. Holla, and N. S. Kumari, Eur. J. Med. Chem., 43, 261 (2008) https://doi.org/10.1016/j.ejmech.2007.03.014
  11. Y. Y. Heum and S. K Bae, J. Korean Ind. Eng. Chem., 13, 486 (2002)
  12. Z. Li, Q. Yang, and X. Qian, Bioorg. Med. Chem., 13, 3149 (2005) https://doi.org/10.1016/j.bmc.2005.02.045
  13. X. Qian, Z. Li, and Q. Yang, Bioorg. Med. Chem., 15, 6846 (2007) https://doi.org/10.1016/j.bmc.2007.07.008
  14. P. Vicini, A. Geronikaki, M. Incerti, F. Zani J. Dearden, and M. Hewitt, Bioorg. Med. Chem., 16, 3714 (2008) https://doi.org/10.1016/j.bmc.2008.02.001
  15. L. Novak, J. Rohaly, and C. Szantay, OPP BRIEFS, 31, 693 (1999)
  16. S. C. Sinha, S. Dutta, and J. Sun, Tetrahedron Lett., 41, 8243 (2002) https://doi.org/10.1016/S0040-4039(00)01469-6
  17. T. Aoyama, S. Murata, Y. Sukuki, and M. Komodori, Tetrhedron, 62, 1 (2006) https://doi.org/10.1016/S0040-4020(05)02083-1
  18. M. Narender, M. S. Reddy, R. Sridhra, Y. V. D. Nageswar, and K. R. Rao, Tetrahedron Lett., 46, 5953 (2005) https://doi.org/10.1016/j.tetlet.2005.06.130