Determination of volatile and residual iodine during the dissolution of spent nuclear fuel

사용 후 핵연료 용해 중 휘발 및 잔류 요오드 분석

  • Kim, Jung Suk ;
  • Park, Soon Dal ;
  • Jeon, Young Shin ;
  • Ha, Young Keong ;
  • Song, Kyuseok
  • 김정석 ;
  • 박순달 ;
  • 전영신 ;
  • 하영경 ;
  • 송규석
  • Received : 2009.05.29
  • Accepted : 2009.09.14
  • Published : 2009.10.25

Abstract

The determination of iodine in the spent nuclear fuel and the volatile behavior during its acid dissolution have been studied by NAA(neutron activation analysis) and electron probe microanalysis (EPMA). Simulated spent fuels (SIMFUELs) were dissolved in $HNO_3$(1+1) at $90^{\circ}C$ for 8 hours. The iodine remained in a dissolver solution after dissolution, and that condensed in dissolution apparatus and trapped in the adsorbent by volatilization during the dissolution were determined, respectively. The condensed iodine was recovered by the redistillation with $HNO_3$(1+1) after transfer of the dissolver solution. The iodines in the dissolver and redistilled solution were separated by solvent extraction followed by ion exchange or precipitation method and determined by RNAA (radiochemical neutron activation analysis). The ion exchange column and filtration kit used for the isolation of iodine, which were prepared with a polyethylene tube, were used as an insert in the pneumatic tube for neutron irradiation. The iodine volatilized during the dissolution of SIMFUELs was collected in a trapping tube containing Ag-silica gel (Ag-impregnated silica gel) adsorbent, and the distribution of iodine trapped in the adsorbents were determined by EPMA. The adsorbing characteristics shown with the SIMFUELs were compared with those shown with a real spent fuel from the nuclear power plant.

Keywords

Iodine;spent nuclear fuel;Ag-silica gel absorbent;NAA;EPMA

References

  1. C. C. Lin, J. Inorg. Nucl. Chem., 42, 1093-1099(1980) https://doi.org/10.1016/0022-1902(80)80416-7
  2. T. Sakurai, A. Takahashi, N. Ishikawa, Y. Komaki and M. Ohnuki, Nucl. Technol., 116, 319-326(1996) https://doi.org/10.13182/NT96-A35287
  3. N. Boukis and E. Henrich, Radiochim. Acta, 54, 103-108(1991)
  4. J. J. Stoffels, Radiochem. Radioanal. Lett., 55(2), 99-106(1982)
  5. N. Boukis and E. Henrich, Radiochim. Acta, 55, 37-42(1991)
  6. W. E. Clark, Nucl. Technol., 36, 215-221(1977) https://doi.org/10.13182/NT77-A31928
  7. B. S. Choi, G. I. Parl, J. W. Lee. H. Y. Yang and S. K. Ryu, J. Radioanal. Nucl. Chem., 256(1), 19-26(2003) https://doi.org/10.1023/A:1023383505788
  8. H. Mineo, M. Gotoh, M. Iizuka, S. Fujisaki, H. Hagiya and G. Uchiyama, Sep. Sci. Technol., 38(9), 1981-2001(2003) https://doi.org/10.1081/SS-120020130
  9. T. Adachi, T. Muromura, H. Takeishi and T. Yamamoto, J. Nucl. Mater., 160, 81-87(1988) https://doi.org/10.1016/0022-3115(88)90011-6
  10. 노성기, 박종묵, 민덕기, 최병일, 신희성, KAERI/PIED/note-001/87, 'KNU 가압경수로 사용후핵연료내 방사성물질 함유량', (1987)
  11. 박규창, 분석화학, 광림사, 332-346(1987)
  12. R. S. Strebin, F. P. Brauer, J. H. Kaye, M. S. Rapids and J. J. Stoffels, J. Radioanal. Nucl. Chem. Lett., 127(1), 59-73(1988) https://doi.org/10.1007/BF02165506
  13. H. Kleykamp, J. Nucl. Mater., 131, 221-246(1985) https://doi.org/10.1016/0022-3115(85)90460-X
  14. S. J. Parry, J. Radioanal. Nucl. Chem., 248(1), 137-141(2001) https://doi.org/10.1023/A:1010654830751
  15. ASTM D 2334-85, 'Standard Test Method for Radioactive Iodine in Water', Annual Book of ASTM Standards, Vol. 11.01, 1985
  16. L. C. Bate and J. R. Stokely, J. Radioanal. Chem., 72(1-2), 557-570(1982)
  17. W. R. A Goossens, G. G. Eichholz and D. W. Tedder, 'Treatment of Gaseous Effluents at Nuclear Facilities', Harwood Academic Pub., Chur, Switzerland, 67- 178, 1991
  18. E. Henrich, R. Hufner and A. Sahm, 'Proc. of an international symposium on management of gaseous wastes from nuclear facilities', IAEA-SM-245/16, IAEA Vienna, 139-156(1978)
  19. N. Lavi, J. Radioanal. Chem., 20, 41-49(1974) https://doi.org/10.1007/BF02515899
  20. K. H. Lieser, P. Georgoulas and P. Hoffmann, Radiochim. Acta, 48, 193-199(1989)
  21. Y. V. Kuznetsov, S. P. Rosyanov and V. K. Vinogradova, Radiokhimiya, 26(4), 572-575(1984)
  22. D. O. Campbell, A. P. Malinauskas and W. R. Stratton, Nucl. Technol., 53, 111-119(1981) https://doi.org/10.13182/NT81-A32615
  23. T. Nedveckaite and W. Filistowicz, J. Radioanal. Nucl. Chem. Art., 174(1), 43-47(1993) https://doi.org/10.1007/BF02040331
  24. T. J. Anderson, '23rd Conference on Analytical Chemistry in Energy Technology', Gatlinburg, Tennessee, Conf-781040-3, DP-MS-78-51 (1978)
  25. J. S. Kim, S. D. Park, C. H. Lee, B. C. Song and K. Y. Jee, Anal. Sci. Technol., 18(4), 298-308(2005)
  26. M. Nakashima, M. Saeki, Y. Aratono and E. Tachikawa, Int. J. Appl. Radiat. Isot., 32, 397-402(1981) https://doi.org/10.1016/S0020-708X(81)81006-X
  27. R. Cripps, L. Venuat and H. Bruchertseifer, J. Radioanal. Nucl. Chem., 256(2), 357-360(2003) https://doi.org/10.1023/A:1023918324811