Oxidation behavior on the surface of titanium metal specimens at high temperatures (300~1000℃)

고온 (300~1000 ℃)에서 티타늄 금속시편의 표면 산화거동

  • Park, Yang-Soon (Korea Atomic Energy Research Institute) ;
  • Han, Sun-Ho (Korea Atomic Energy Research Institute) ;
  • Song, Kyuseok (Korea Atomic Energy Research Institute)
  • 박양순 (한국원자력연구원, 원자력화학연구부) ;
  • 한선호 (한국원자력연구원, 원자력화학연구부) ;
  • 송규석 (한국원자력연구원, 원자력화학연구부)
  • Received : 2009.09.18
  • Accepted : 2009.11.26
  • Published : 2009.12.25


For the investigation of the oxidation behavior for titanium metal at various temperatures, titanium specimens were heated for 2 hours in the range of $300{\sim}1000^{\circ}C$, individually. And then X-ray diffraction(XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic analyses were carried out. At $300^{\circ}C$, infrared absorption bands on the surface of the titanium specimen were shown in a spectrum by the oxygen uptake of titanium metal(hexagonal). At increased temperature, not only infrared absorption bands but also X-ray diffraction peaks for the titanium oxide were grown and shifted to low wave number ($cm^{-1}$) and angle($^{\circ}$) due to the more oxygen diffusion into titanium metal. At $700^{\circ}C$, $Ti_3O$ (hexagonal phase) was identified by X-ray diffractometer. $TiO_2$ (rutile, tetragonal phase) layer was produced on the surface of the specimen below $1{\mu}m$ in thickness at $600^{\circ}C$, and grown about $2{\mu}m$ at $700^{\circ}C$ and with $110{\mu}m$ in thickness at $1000^{\circ}C$. Above $900^{\circ}C$, (110) plane of the crystal on the surface of rutile-$TiO_2$ layer was grown.


titanium;oxidation;x-ray diffraction;SEM/EDS;ATR-FTIR spectroscopy


  1. Z. G. Wang, X. T. Zu, J. Lian, X. Q. Huang, L. Wang, Y. Z. Liu and L. M. Wang, J. Alloy. Comp., 384, 93-97(2004) https://doi.org/10.1016/j.jallcom.2004.04.084
  2. E. Rolinski, G. Sharp, D. F. Cowgill and D. J. Peterman, J. Nucl. Mater., 252, 200-208(1998) https://doi.org/10.1016/S0022-3115(97)00325-5
  3. J. C. Williams, Mat. Sci. Eng., A263, 107-111(1999)
  4. R. Padma, K. Ramkumar and M. Satyam, J. Mat. Sci., 23, 1591-1597(1988) https://doi.org/10.1007/BF01115696
  5. Y. S. Park, Y. K. Ha, S. H. Han, K. Y. Jee and W. H. Kim, J. Nucl. Mater., 372, 59-65(2008) https://doi.org/10.1016/j.jnucmat.2007.02.006
  6. Z. Xiaotao, W. Zhiguo, F. Xiangdong, A. Yongzhong, L. Libin, H. Xingquan and L. Yanling, Surf. Coat. Technol., 140, 161-165(2001) https://doi.org/10.1016/S0257-8972(01)01031-3
  7. T. K. Kim, B. S. Choi, Y. H. Jeong, D. J. Lee and M. H. Chang, J. Nucl. Mater., 301, 81-89(2002) https://doi.org/10.1016/S0022-3115(02)00710-9
  8. S. Van Gils, P. Mast, E. Stijns and H. Terryn, Surf. Coat. Technol., 185, 303-310(2004) https://doi.org/10.1016/j.surfcoat.2004.01.021
  9. C. C. Ting, S. Y. Chen and D. M. Liu, Thin Solid Films, 402, 290-295(2002) https://doi.org/10.1016/S0040-6090(01)01675-3
  10. Z. Xiaotao, F. Xiangdong, W. Zhiguo, Z. Guangting, L. Libin, L. Yanling and H. Xingquan, Surf. Coat. Technol., 148, 216-220(2001) https://doi.org/10.1016/S0257-8972(01)01358-5
  11. H. Ahn, D. Lee, K. M. Lee, K. Lee, D. Baek and S. W. Park, Surface & Coatings Technology, 202, 5784-5789(2008) https://doi.org/10.1016/j.surfcoat.2008.06.074
  12. H. Guleryuz and H. Cimenoglu,Biomaterials, 25, 3325-3333(2004) https://doi.org/10.1016/j.biomaterials.2003.10.009