DOI QR코드

DOI QR Code

Comparative Analysis of Repetitive Elements of Imprinting Genes Reveals Eleven Candidate Imprinting Genes in Cattle

  • Kim, HyoYoung (Laboratory of Bioinformatics and Population Genetics, Department of Agricultural Biotechnology Seoul National University) ;
  • Kim, Heebal (Laboratory of Bioinformatics and Population Genetics, Department of Agricultural Biotechnology Seoul National University)
  • Received : 2008.08.30
  • Accepted : 2009.03.09
  • Published : 2009.06.01

Abstract

Few studies have reported the existence of imprinted genes in cattle compared to the human and mouse. Genomic imprinting is expressed in monoallelic form and it depends on a single parent-specific form of the allele. Comparative analysis of mammals other than the human is a valuable tool for explaining the genomic basis of imprinted genes. In this study, we investigated 34 common imprinted genes in the human and mouse as well as 35 known non-imprinted genes in the human. We found short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and long terminal repeats (LTRs) in imprinted (human and mouse) and control (cattle) genes. Pair-wise comparisons for the three species were conducted using SINEs, LINEs, and LTRs. We also calculated 95% confidence intervals of frequencies of repetitive sequences for the three species. As a result, most genes had a similar interval between species. We found 11 genes with conserved SINEs, LINEs, and LTRs in the human, mouse, and cattle. In conclusion, eleven genes (CALCR, Grb10, HTR2A, KCNK9, Kcnq1, MEST, OSBPL5, PPP1R9A, Sgce, SLC22A18, and UBE3A) were identified as candidate imprinted genes in cattle.

Keywords

Cattle;Correlation Coefficient;Imprinting Gene;Repetitive Elements

Acknowledgement

Supported by : Rural Development Administration

References

  1. Allen, E., Steve Horvath, Frances Tong, Peter Kraft, Elizabeth Spiteri, Arthur D. Riggs and York Marahrens. 2003. High concentrations of long interspersed nuclear element sequence distinguish monoallelically expressed genes. PNAS. 100:9940-9945 https://doi.org/10.1073/pnas.1737401100
  2. Bland, J. Martin and Douglas G. Altman. 1986. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. i:307:310 https://doi.org/10.1016/S0140-6736(86)90837-8
  3. Cheng, H. C., F. W. Zhang, C. Y. Deng, C. D. Jiang, Y. Z. Xiong, F. E. Li and M. G. Lei. 2007. ASCL2 gene expression analysis and its association with carcass traits in pigs. Asian-Aust. J. Anim. Sci. 20:1485-1489
  4. Downer, J. 2002. Epigenetics and imprinted genes. http://www.hopkinsmedicine.org/press/2002/November/epigen etics.htm
  5. Lee, Yun-Mi, Ji-Hong Lee and Jong-Joo Kim. 2007. Evaluatino of reciprocal cross design on detection and characterization of non-mendelian QTL in $F_{2}$ outbred populations: I. parent-of origin effect. Asian-Aust. J. Anim. Sci. 20:1805-1811
  6. Luedi, Philippe P., Fred S. Dietrich, Jennifer R. Weidman, Jason M. Bosko, Randy L. Jirtle and Alexander J. Hartemink. 2007. Computational and experimental identification of novel human imprinted genes. Genome Res. 17:1723-1730 https://doi.org/10.1101/gr.6584707
  7. Pei, L., Ofer Wiser, Anthony Slavin, David Mu, Scott Powers, Lily Yeh Jan and Timothy Hoey. 2003. Oncogenic potential of TASK3 (Kcnk9) depends on $K^{+}$ channel function. PNAS. 100:7803-7807 https://doi.org/10.1073/pnas.1232448100
  8. Suzuki, S., Ryuichi Ono, Takanori Narita, Andrew J. Pask, Geoffery Shaw, Changshan Wang, Taksshi Kohda, Amber E. Alsop, Jennifer A. Marshall Graves, Yuji Kohara, Fumitoshi Ishino, Marilyn B. Renfree and Tomoko Kaneko-Ishino. 2007. Reteotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genetics. 3:e55 https://doi.org/10.1371/journal.pgen.0030055
  9. Watson, James D., Tania A.Baker, Stephen P. Bell, Alexander Gann, Michael Levine and Richard Losick. 2007. Molecular biology of the gene. Benjamin Cummings, San Francisco, pp. 140-141
  10. Xiayi, K., Simon N. Thomas, David O. Robinson and Andrew Collins. 2002. The distinguishing sequence characteristics of mouse imprinted genes. Mamm. Genome. 13:639-645 https://doi.org/10.1007/s00335-002-3038-x
  11. Zaitoun, Ismail and Hasan Khatib. 2006 Assessment of genomics imprinting of SLC38A4, NNAT, NAPIL5, and H19 in cattle. BMC Genetics, 7:49 https://doi.org/10.1186/1471-2156-7-49
  12. Zaitoun, I. and H. Khatib. 2008. Comparative genomic imprinting and expression analysis of six cattle genes. J. Anim. Sci. 86:25-32 https://doi.org/10.2527/jas.2007-0150
  13. Pandey, A., Hangjun Duan, Pier Paolo Di Fiore and Vishva M. Dixit. 1995. The ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10. J. Biological Chem. 270:21461-21463 https://doi.org/10.1074/jbc.270.37.21461
  14. Khatib, H., Ismail Zaitoun and Eui-Soo Kim. 2007. Comparative analysis of sequence characteristics of imprinted genes in human, mouse, and cattle. Mamm Genome. 18:538-547 https://doi.org/10.1007/s00335-007-9039-z
  15. Miyoshi, N., Yoshimi Kuroiwa, Takashi Kohda, Hiroshi Shitara, Hiromichi Yonekawa, Tohru Kawabe, Hideaki Hasegawa, Sheilla C. Barton, M. Azim Surani, Tomoko Kaneko-Ishino and Fumitoshi Ishino. 1998. Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc. Natl. Acad. Sci. 95:1102-1107 https://doi.org/10.1073/pnas.95.3.1102
  16. Nakabayashi, K., S. Makino, S. Minagawa, A. C. Smith, J. S. Bamforth, P. Stanier, M. Preece, L. Parker-Katiraee, T. Paton, M. Oshimura, P. Mill, Y. Yoshikawa, C. C. Hui, D. Monk, G. E. Moore and S. W. Scherer. 2004. Genomic imprinting of PPP1R9A encoding neurabin l in skeletal muscle and extraembryonic tissues. J. Med. Genet. 41:601-608 https://doi.org/10.1136/jmg.2003.014142
  17. Pearsall, R. Scott, C. Plass, M. A. Romano, M. D. Garrick, H. Shibata, Y. Hayashizaki and W. A. Held. 1998. A direct repeat sequence at the Rasgrf1 locus and imprinted expression. Genomics. 55:194-201 https://doi.org/10.1006/geno.1998.5660
  18. Tycko, B. and Ian M. Morison. 2002. Physiological functions of imprinted genes. J. Cellular Physiol. 192:245-258 https://doi.org/10.1002/jcp.10129
  19. Lee, H. K., S. S. Lee, T. H. Kim, G. J. Jeon, H. W. Jung, Y. S. Shin, J. Y. Han, B. H. Choi and I. C. Cheong. 2003. Detection of imprinted quantitative trait loci (QTL) for growth traits in pigs. Asian-Aust. J. Anim. Sci. 16:1087-1092
  20. Onyango, P., Webb Miller, Jessica Lehoczky, Cheuk T. Leung, Bruce Birren, Sarah Wheelan, Ken Dewar and Andrew P. Feinberg. 2000. Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain. Genome Res. 10:1697-1710 https://doi.org/10.1101/gr.161800
  21. Weidman, Jennifer R., Susan K. Murphy, Catherine M. Nolan, Fred S. Dietrich and Randy L. Jirtle. 2004. Phylogenetic footprint analysis of IGF2 in extant mammals. Genome Res. 14:1726-1732 https://doi.org/10.1101/gr.2774804
  22. Reik, W. and Jorn Walter. 2001. Genomic imprinting: parental influence on the genome. Nat. Rev. Gnet. 2:21-32 https://doi.org/10.1038/35047554
  23. Walter, J., B. Hutter, T. Khare and M. Paulsen. 2006. Repetitive elements in imprinted genes. Cytogenet Genome Res. 113:109-115 https://doi.org/10.1159/000090821
  24. Greally, John M. 2002. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. PNAS. 99:327-332 https://doi.org/10.1073/pnas.012539199
  25. Ke, X., Simon N. Thomas, David O. Robinson and Andrew Collins. 2002. The distinguishing sequence characteristics of mouse imprinted genes. Mamm Genome. 13:639-645 https://doi.org/10.1007/s00335-002-3038-x
  26. McKillup, Steve. 2006. Statistics Explained. Cambridge University Press, UK, pp. 77-243
  27. Thomas, J. W., J. W. Touchman, R. W. Blakesley, G. G. Bouffard, S. M. Beckstorm-Sternberg, E. H. Margulies, M. Blanchette, A. C. Siepel, P. J. Thomas, J. C. McDowell, B. Maskeri, N. F. Hansen, M. S. Schwartz, R. J. Weber, W. J. Kent, D. Karolchik, T. C. Bruen, R. Bevan, D. J. Cutler, S. Schwartz, L. Elnitski, J. R. Idol, A. B. Prasad, S. Q. Lee-Lin, V. V. B. Maduro, T. J. Summers, M. E. Portnoy, N. L. Dietrich, N. Akhter, K. Ayele, X. Guan, B. Benjamin, K. Cariaga, C. P. Brinkley, S. Y. Brooks, S. Granite, X. Guan, J. Gupta, P. Haghighi, S. L. Ho, M. C. Huang, E. Karlins, P. L. Laric, R. Legaspi, M. J. Lim, Q. L. Maduro, C. A. Masiello, S. D. Mastrian, J. C. McCloskey, R. Pearson, S. Stantripop, E. E. Tiongson, J. T. Tran, C. Tsurgeon, J. L. Vogt, M. A. Walker, K. D. Wetherby, L. S. Wiggins, A. C. Young, L. H. Zhang, K. Osoegawa, B. Zhu, B. Zhao, C. L. Shu, P. J. De Jong, C. E. Lawrence, A. F. Smit, A. Chakravarti, D. Haussler, P. Green, W. Miller and E. D. Green. 2003. Comparative analyses of multi-species sequences from targeted genomic regions. Nature. 424 https://doi.org/10.1038/nature01858
  28. Takafusa H., Kohda, Takashi, Kaneko-Ishino, Tomoko, Ishino and Fumitoshi. 2003. Imprinting regulation of the murine Meg1/Grb10 and human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Research. 31:1398-1406 https://doi.org/10.1093/nar/gkg232
  29. Jirtle, Randy L. 2006. Geneimprint. http://www.geneimprint.com/site/genes-by-species.Mus+musculus
  30. Quist, J. F., C. L. Barr, R. Schachar, W. Roberts, M. Malone, R. Tannock, V. S. Basile, J. Beitchman and J. L. Kennedy. 2000. Evidence for the serotonin HTR2A receptor gene as a susceptibility factor in attention deficit hyperactivity disorder (ADHD). Molecular Psychiatry. 5:537-541 https://doi.org/10.1038/sj.mp.4000779
  31. Schaffner, Stephen F. 2004. The X chromosome in population genetics. Nature Reviews. 5. https://doi.org/10.1038/nrg1247
  32. Crawley, Michael J. 2005. Statistics an introduction using R. Imperial College London, UK, pp. 45-99
  33. Hoshiya, H., M. Meguro, A. Kashiwagi, C. Okita and M. Oshimura. 2003. Calcr, a brain-specific imprinted mouse calcitonin receptor gene in the imprinted cluster of the proximal region of chromosome 6. J. Human Genetics. 48:208-211 https://doi.org/10.1007/s10038-003-0006-6
  34. Stroop, Steven D., Deborah L. Thompson, Rolf E. Kuestner and Emma E. Moore. 1993. A recombinant human calcitonin receptor functions as an extracellular calcium sensor. J. Biological Chem. 268:19927-19930