Microwave Syntheses of Subphthalocyanine Derivatives and Their Properties

서브프탈로시아닌 유도체의 마이크로파 합성 및 이의 특성

  • Kim, Jae Hwan (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Heo, Jin (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Kang, Boo Min (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Son, Dae-Hee (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Lee, Geun-Dae (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University)
  • 김재환 (부경대학교 공과대학 응용화학공학부) ;
  • 허진 (부경대학교 공과대학 응용화학공학부) ;
  • 강부민 (부경대학교 공과대학 응용화학공학부) ;
  • 손대희 (부경대학교 공과대학 응용화학공학부) ;
  • 이근대 (부경대학교 공과대학 응용화학공학부) ;
  • 홍성수 (부경대학교 공과대학 응용화학공학부) ;
  • 박성수 (부경대학교 공과대학 응용화학공학부)
  • Received : 2008.12.08
  • Accepted : 2009.02.02
  • Published : 2009.04.10

Abstract

Subphthalocyanine (SubPc) derivatives with different kind of substitute groups were synthesized successfully from various precursors using conventional and microwave heating sources. The chemical structure of precursor and product was determined by $^{1}H-NMR$ and FT-IR spectrometer. Also, spectroscopic property was measured by UV-Vis spectrometer. Compared to the conventional synthesis, it was found that SubPc derivatives were synthesized for a shorter reaction time with a higher synthetic yield in the microwave synthesis.

Acknowledgement

Supported by : 부경대학교

References

  1. A. Meller and A. Ossko, Monatsh. Chem., 103, 150 (1972) https://doi.org/10.1007/BF00912939
  2. J. Rauschnabel and M. Hanack, Tetrahedron Lett., 36, 1629 (1995) https://doi.org/10.1016/0040-4039(95)00124-U
  3. C. G. Claessens, D. Gonz$\acute{a}$lez-Rodr$\acute{i}$guez, and T. Torres, Chem. Rev., 102, 835 (2002) https://doi.org/10.1021/cr0101454
  4. J. Zyss and I. Ledoux, Chem. Rev., 94, 77 (1994) https://doi.org/10.1021/cr00025a003
  5. Supramolecular Photosensitive and Electroactive Materials, ed. H. S. Nalwa, 1, Academic Press, New York (2001)
  6. N. Kobayashi, R. Kondo, S. Nakajima, and T. Osa, J. Am. Chem. Soc., 112, 9640 (1990) https://doi.org/10.1021/ja00182a034
  7. R. S. Iglesias, C. G. Claessens, T. Torres, A. Rehman, and D. M. Guldi, Chem. Commun., 2113 (2005) https://doi.org/10.1039/b502041g
  8. H. Kietaibl, Monatsh. Chem., 105, 405 (1974) https://doi.org/10.1007/BF00907390
  9. T. S. Laverghetta, Practical Microwaves, Prentice-Hall, New Jersey (1995)
  10. Microwave-Enhanced Chemistry, eds. H. M. S. Kingston and S. J. Haswell, An American Chemical Society, Washington DC (1997)
  11. S. S. Park, E. H. Hwang, B. C. Kim, and H. C. Park, J. Am. Ceram. Soc., 83, 1341 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01390.x
  12. W. R. Tinga, MRS Symp. Proc., 124, 33 (1994)
  13. J. D. Ford and D. C. T. Pei, J. Microwave Power, 2, 61 (1967) https://doi.org/10.1080/00222739.1967.11688647
  14. C. Gabriel and S. Gabriel, Chem. Soc. Rev., 27, 213 (1998) https://doi.org/10.1039/a827213z
  15. L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001) https://doi.org/10.1016/S0040-4020(01)00905-X
  16. K. S. Jung, J. H. Kwon, S. M. Shon, J. P. Ko, J. S. Shin, and S. S. Park, J. Mater. Sci., 39, 723 (2004) https://doi.org/10.1023/B:JMSC.0000011541.91490.88
  17. J. G. Young and W. Onyebuagu, J. Org. Chem., 55, 2155 (1990) https://doi.org/10.1021/jo00294a032
  18. R. D. George and A. W. Snow, J. Heterocycl. Chem., 32, 495 (1995) https://doi.org/10.1002/jhet.5570320219
  19. D. W$\ddot{o}$hrle, M. Eskes, K. Shigehara, and A. Yamada, Synthesis., 195 (1993)
  20. B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Marti, S. Brasselet, I. Ledoux, and J. Zyss, J. Am. Chem. Soc., 120, 12808 (1998) https://doi.org/10.1021/ja980508q