DOI QR코드

DOI QR Code

Expression of dehydration responsive element-binding protein-3 (DREB3) under different abiotic stresses in tomato

  • Islam, Mohammad Saiful (Department of Molecular and Medical Biotechnology, School of Biotechnology, Kangwon National University) ;
  • Wang, Myeong-Hyeon (Department of Molecular and Medical Biotechnology, School of Biotechnology, Kangwon National University)
  • Published : 2009.09.30

Abstract

We investigated the expression pattern of dehydration responsive element-binding protein-3 in tomato under different abiotic stresses. Full length LeDREB3 cDNA was isolated from tomato plant, followed by phylogenetic analysis based on deduced amino acid sequences that revealed significant sequence similarity to DREB proteins belonging to diverse families of plant species. Southern blot analysis showed duplicate copies of LeDREB3 in the tomato genome while organ-specific expression profiling indicated constitutive expression of LeDREB3 in all tested organs, which was particularly strong in flower. LeDREB3 expression was significantly induced by Nacl, drought, low temperature and $H_2O_2$. Moreover, LeDREB3 was slightly regulated by treatment with ABA and MV. These observations suggest that the LeDREB3 gene may be involved in the response of the tomato plant to stress.

References

  1. Suzuki, N., Rizhsky, L., Liang, H., Shuman, J., Shulaev, V. and Mittler, R. (2005) Enhanced tolerance to transcriptional co-activator multi-protein bridging factor $1C^{1(w)}$. Plant Physiol. 139, 1313-1322 https://doi.org/10.1104/pp.105.070110
  2. Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohnert H. J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463-499 https://doi.org/10.1146/annurev.arplant.51.1.463
  3. Zhu, J. K. (2001) Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4, 401-406 https://doi.org/10.1016/S1369-5266(00)00192-8
  4. Yi, S. Y., Kim, J. H., Joung, Y. H., Lee, S., Kim, W. T., Yu, S. H. and Choi, D. (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136, 2862-2874 https://doi.org/10.1104/pp.104.042903
  5. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998-1009 https://doi.org/10.1006/bbrc.2001.6299
  6. Magnani, E., Sjolander, K. and Hake, S. (2004) From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16, 2265-2277 https://doi.org/10.1105/tpc.104.023135
  7. Nakano, T., Suzuki, K., Fujimura, T. and Shinshi, H. (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140, 411-432 https://doi.org/10.1104/pp.105.073783
  8. Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G. and Pereira, A. (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when over expressed in Arabidopsis. Plant Cell 16, 2463-2480 https://doi.org/10.1105/tpc.104.022897
  9. Gutterson, N. and Reuber, T. L. (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7, 465-471 https://doi.org/10.1016/j.pbi.2004.04.007
  10. Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high salt and cold-responsive gene expression. Plant J. 33, 751-763 https://doi.org/10.1046/j.1365-313X.2003.01661.x
  11. Guo, Z. J., Chen, X. J., Wu, X. L., Ling, J. Q. and Xu, P. (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol. Biol. 55, 607-618 https://doi.org/10.1007/s11103-004-1521-3
  12. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively in Arabidopsis. Plant Cell 10, 1391-1406 https://doi.org/10.1105/tpc.10.8.1391
  13. Xue, G. P. (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J. 33, 373-383 https://doi.org/10.1046/j.1365-313X.2003.01630.x
  14. Pulla, R. K., Kim, Y. J., Kim, M. K., Sentil, K. S., In, J. G and Yang, D. C. (2008) Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses. Biochem. Mol. Biol. Rep. 41, 338-343
  15. Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3, 217-223 https://doi.org/10.1016/S1369-5266(00)80068-0
  16. Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O. and Thomashow, M. F. (1998) MF Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280, 104-106 https://doi.org/10.1126/science.280.5360.104
  17. Kasuga, M., Miura, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45, 346-350 https://doi.org/10.1093/pcp/pch037
  18. Oh, S. J., Song, S. I., Kim, Y. S., Jang, H. J., Kim, S.Y., Kim, M., Kim, Y. K., Nahm, B. H. and Kim, J. K. (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138, 341-351 https://doi.org/10.1104/pp.104.059147
  19. Kizis, D. and Pages, M. (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J. 30, 679-689 https://doi.org/10.1046/j.1365-313X.2002.01325.x
  20. Seong, E. S., Kwon, S. S., Ghimire, B. K., Yu, C. Y., Cho, D. H., Lim, J. D., Kim, K. S., Heo, K., Lim, E. S., Chung, I. M., Kim, M. J. and Lee, Y. S. (2008) LebZIP2 induced by salt and drought stress and transient overexpression by Agrobacterium. Biochem. Mol. Biol. Rep. 41, 693-698
  21. Morsy, M. R., Almutairi, A. M., Gibbons, J., Yun, S. J. and de los Reyes, B. G. (2005) The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 344, 171-180 https://doi.org/10.1016/j.gene.2004.09.033
  22. Shen, Y. G., Zhang, W. K., He, S. J., Zhang, J. S., Liu, Q. and Chen, S. Y. (2003a) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet. 106, 923-930 https://doi.org/10.1007/s00122-002-1131-x
  23. Nakashima, K., Shinwari, Z. K., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in ehydration and high-salinity-responsive gene expression. Plant Mol. Biol. 42, 657-665 https://doi.org/10.1023/A:1006321900483
  24. Baker, S. S., Wilhelm, K. S. and Thomashow, M. F. (1994) The 5/-region of Arabidopsis thaliana cor15A has cis-acting elements that confer cold, drought and ABA-regulated gene expression. Plant Mol. Biol. 24, 701-713 https://doi.org/10.1007/BF00029852
  25. Kim, H. J., Kim, Y. K., Park, J. Y. and Kim, J. (2002) Light signaling mediated by phytochrome plays an important role in cold induced gene expression through the C-repeat/ dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J. 29, 693-704 https://doi.org/10.1046/j.1365-313X.2002.01249.x
  26. Chak, R. K. F., Thomas, T. L., Quatrano, R. S. and Rock, C. D. (2000) The genes ABI1 and ABI2 are involved in abscisic acid and drought inducible expression of the Daucus carota L. Dc3 promoter in guard cells of transgenic Arabidopsis thaliana (L.) Heynh. Planta 210, 875-883 https://doi.org/10.1007/s004250050692
  27. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stressinducible transcription factor. Nature 17, 287-291 https://doi.org/10.1038/7036
  28. Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264 https://doi.org/10.1105/tpc.6.2.251
  29. Fujibe, T., Saii, H., Arakawa, K., Yabe, N., Takeuchi, Y. and Yamamoto, K. T. (2003) A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive red1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol. 134, 275-285 https://doi.org/10.1104/pp.103.033480
  30. Foyer, C. H., Descourvieres, P. and Kunert, K. J. (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ. 17, 507-523 https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  31. Dat, J., Vandenabeels, S., Vranova, E., Van Montagu, M., Inze, D. and Van Breusegem, F. (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779-795 https://doi.org/10.1007/s000180050041
  32. Dellaporta, S. L., Wood, J. and Hicks, J. B. (1983) A plant DNA mini preparation: version II. Plant Mol. Biol. Rep. 1, 19-21 https://doi.org/10.1007/BF02712670
  33. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York, USA

Cited by

  1. Transcriptional Analyses of Mandarins Seriously Infected by ‘Candidatus Liberibacter asiaticus’ vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0133652
  2. Characterization of OsDREB6 responsive to osmotic and cold stresses in rice vol.57, pp.3, 2014, https://doi.org/10.1007/s12374-013-0480-0
  3. The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress vol.121, pp.1, 2015, https://doi.org/10.1007/s11240-014-0698-7
  4. Ectopic expression of a tomato DREB gene affects several ABA processes and influences plant growth and root architecture in an age-dependent manner vol.214, 2017, https://doi.org/10.1016/j.jplph.2017.04.004
  5. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato vol.52, 2012, https://doi.org/10.1016/j.plaphy.2011.11.005
  6. Transcriptomic, Proteomic, Metabolomic and Functional Genomic Approaches for the Study of Abiotic Stress in Vegetable Crops vol.33, pp.2-3, 2014, https://doi.org/10.1080/07352689.2014.870420
  7. Genome-wide identification and characterization of the DREB transcription factor gene family in mulberry vol.59, pp.2, 2015, https://doi.org/10.1007/s10535-015-0498-x
  8. Expression profiling of the DREB2 type gene from tomato (Solanum lycopersicum L.) under various abiotic stresses vol.52, pp.1, 2011, https://doi.org/10.1007/s13580-011-0125-5
  9. vol.5, pp.1, 2018, https://doi.org/10.1098/rsos.171198
  10. The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01402