Estimation of Genetic Parameters for Finished and Furlong Times in Thoroughbred Racehorses

Cho, Byung-Wook;Ha, Tae-Yong;Cho, Kwang-Hyun;Kim, Si-Dong;Lee, Hak-Kyo;Kong, Hong-Sik;Park, Kyung-Do

  • Received : 2009.03.27
  • Accepted : 2009.07.07
  • Published : 2009.12.01


The objective of this study was to estimate genetic parameters for racing performance traits of thoroughbredracehorses, using a total of 58,124 racing records of 4,200 horses at Gwacheon Racing Park collected from January 2002 to December 2006. This study measured start one furlong time, last three and last one furlong times, and the resulting furlong time averages were 14.2 seconds, 39.9 seconds and 13.9 seconds, respectively. Furlong time means a split time measured based on a 1/8-mile (or approximately 201 m) distance and finished time means total racing time measured from start position to finish line. In the shortest distance races of 1,000 m, the average last three and last one furlong time was fastest at 38.7 seconds and 13.6 seconds, respectively. The correlation between finished time and start one furlong time decreased as the race distance increased, and the same trend was recognized from the correlation between finished time and last three furlong time. In short distance races of 1,400 m or less, the starting ability was found to be an important trait. The average speed was highest at 56 km/h for a 1,000 m race and lowest at 53.2 km/h for a 1,700 m race. Heritabilities of the start one furlong time, the last three and last one furlong time were estimated to be 0.337, 0.245 and 0.210, respectively; and repeatabilities for them were 0.452, 0.353 and 0.309, respectively. Phenotypic and genetic correlations between the start and the last one furlong time were negative at -0.141 and -0.155, respectively.


Furlong Time;Finished Time;Genetic Parameter;Heritability;Repeatability;Thoroughbred


  1. Árnason, Th., A. Darenius and J. Philipsson. 1982. Genetic selection indices for Swedish Trotter broodmares. Livest. Prod. Sci. 8:557-565
  2. Lee, K. J. and K. D. Park. 2000. Relationship between Dosage System and racing performance of Thoroughbreds. Kor. J. Anim. Sci. 42(1):21-28
  3. Saastamionen, M. T. and A. Nylander. 1996. Genetic and phenotypic parameters for age at starting to race and racing performance during early career in Trotters. Livest. Prod. Sci. 45:63-68
  4. Thuneberg-Selonen, T., J. Poso, E. Mantysaari and M. Ojala. 1999. Use of individual race results in the estimation of genetic parameters of trotting performance for Finnhorse and Standardbred trotters. Agricultural and Food Science in Finland. 8:353-363
  5. Ojala, M. J. and L. D. Van Vleck. 1981. Measures of racetrack performance with regard to breeding evaluation of Trotters. J. Anim. Sci. 53(3):611-619
  6. Misztal, I., T. J. Lawlor, T. H. Short and P. M. VanRaden. 1992. Multiple-trait estimation of variance components of yield and type traits using an animal model. J. Dairy Sci. 75:544-551
  7. Steven, Roman. 1986. A Guide to the Dosage System. The Thoroughbred of California
  8. Park, K. D. and K. J. Lee. 1999. Genetic evaluation of Thoroughbred racehorses in Korea. Kor. J Anim Sci. 41(2):135-140
  9. Hintz, R. L. 1980. Genetics of performance in the horse. J. Anim. Sci. 51(3):582-594
  10. Minkema, D. 1975. Studies on the genetics of trotting performance in Dutch Trotters. Ann. G$\acute{e}$n$\acute{e}$t. S$\acute{e}$l. Anim. 7(1):99-121


Supported by : Gyeonggi Provincial Government