Adsorption and Storage of Natural Gas by Nanoporous Adsorbents

나노세공체 흡착제에 의한 천연가스의 흡착 및 저장

  • Jhung, Sung Hwa (Department of Chemistry, Kyungpook National University) ;
  • Chang, Jong-San (Green Chemistry & Catalysis Research Center, Korea Research Institute of Chemical Technology)
  • 정성화 (경북대학교 화학과) ;
  • 장종산 (한국화학연구원 그린화학촉매연구센터)
  • Received : 2008.08.22
  • Published : 2009.04.10

Abstract

In order to utilize natural gas (NG), one of the clean energy sources in next-generation, as a fuel for vehicles, it is important to store natural gas with high density. To store NG by adsorption (ANG) at room temperature and at relatively low pressure(35~40 atm) is safe and economical compared with compressed NG and liquefied NG. However, so far no adsorbent is reported to have adsorption capacity suitable for commercial applications. Nanoporous materials including metal-organic frameworks can be potential adsorbents for ANG. In this review, physicochemical properties of adsorbents necessary for high adsorption capacity are summarized. Wide surface area, large micropore volume, suitable pore size and high density are necessary for high energy density. Moreover, low adsorption-desorption energy, rapid adsorption-desorption kinetics and high delivery are needed. Recently, various efforts have been reported to utilize nanoporous materials in ANG, and it is expected to develop a nanoporous material suitable for ANG.

Acknowledgement

Supported by : 한국과학재단

References

  1. D. Lozano-Castell\acute{o}, J. Alca\check{n}iz-Monge, M. A. de la Casa-Lillo, D. Cazorla-Amor\acute{o}s, and A. Linares-Solano, Fuel, 81, 1777 (2002) https://doi.org/10.1016/S0016-2361(02)00124-2
  2. http://www.eere.energy.gov/afdc/afv/gas_vehicles.html
  3. J. Sun, T. D. Jarvi, L. F. Conopask, S. Satyapal, M. J. Rood, and M. Rostam-Abadi, Energy Fuel, 15, 1241 (2001) https://doi.org/10.1021/ef010067n
  4. A. Stein, Adv. Mater., 15, 763 (2003) https://doi.org/10.1002/adma.200300007
  5. O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Nature, 423, 705 (2003) https://doi.org/10.1038/nature01650
  6. S. Kitagawa, and K. Uemura, Chem. Soc. Rev., 34, 109 (2005) https://doi.org/10.1039/b313997m
  7. N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Nature, 408, 50 (2000)
  8. H. Marsh and F. R. Reinoso, Activated carbon, Elsevier (2005)
  9. S. H. Jhung and J.-S. Chang, J. Korean Ind. Eng. Chem, 18, 99 (2007)
  10. K. R. Matranga, A. L. Myers, and E. D. Glandt, Chem. Eng. Sci., 47, 1569 (1992) https://doi.org/10.1016/0009-2509(92)85005-V
  11. X. S. Chen, B. McEnaney, T. J. Mays, J. Alcaniz-Monge, D. Cazorla-Amoros, and A. Linares-Solano, A. Carbon, 35, 1251 (1997) https://doi.org/10.1016/S0008-6223(97)00074-2
  12. D. Lozano-Castell\acute{o}, D. Cazorla-Amor\acute{o}s, A. Linares-Solano, P. J. Hall, D. Gasc\acute{o}n, and C. Gal\acute{a}n, Carbon, 39, 1343 (2001) https://doi.org/10.1016/S0008-6223(00)00254-2
  13. S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, and H.-C. Zhou, J. Am. Chem. Soc., 130, 1012 (2008) https://doi.org/10.1021/ja0771639
  14. P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. D. Weireld, J.-S. Chang, D.-Y. Hong, Y. K. Hwang, S. H. Jhung, and G. Férey, Langmuir, 24, 7245 (2008) https://doi.org/10.1021/la800227x
  15. P. A. Thrower and L. R. Radovic, Chemistry and Physics of Carbon, CRC Press (1999)
  16. R. F. Cracknell, P. Gordon, and K. E. Gubbins, J. Phys. Chem., 97, 494 (1993) https://doi.org/10.1021/j100104a036
  17. D. Lozano-Castell$\acute{o}$, D. Cazorla-Amor$\acute{o}$s, and A. Linares-Solano, Energy Fuel, 16, 1321 (2002) https://doi.org/10.1021/ef020084s
  18. V. C. Menon and S. Komarneni, J. Porous Mater., 5, 43 (1998) https://doi.org/10.1023/A:1009673830619
  19. A. Muto, T. Bhaskar, S. Tsuneishi, Y. Sakada, and H. Ogasa, Energy Fuel, 19, 251 (2005) https://doi.org/10.1021/ef0400316
  20. D. W. Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York (1974)
  21. V/V: 흡착제 부피당 흡착된 천연가스의 부피(STP 조건)의 비율
  22. G. F\acute{e}rey, Chem. Soc. Rev., 37, 191 (2008) https://doi.org/10.1039/b618320b
  23. S. T. Wilson, Stud. Surf. Sci. Catal., 137, 229 (2001) https://doi.org/10.1016/S0167-2991(01)80247-0
  24. C. N. R. Rao, S. Natarajan, and R. Vaidhyanathan, Angew. Chem. Int. Ed., 43, 1466 (2004) https://doi.org/10.1002/anie.200300588
  25. Z. Tan and K. E. Gubbins, J. Phys. Chem., 94, 6061 (1990) https://doi.org/10.1021/j100378a079
  26. '천연가스 저장'이라는 용어는 여러 저장 방법을 이용한 천연가스라는 물질을 저장한다는 개념이 강하며 흡착은 흡착제 표면에 흡착되는 현상을 강조한 용어이며 본 총설에서는 두 용어가일부 혼용되었으나 저장은 이용 측면에서 주로 사용하였고 흡착은 물리적 현상을 설명하거나 물리량을 설명하는데 주로 사용되었음
  27. T. D. Burchell (Ed.) Carbon Materials for Advanced Technologies, Pergamon (1999)
  28. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouqu$\acute{e}$rol, and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985) https://doi.org/10.1351/pac198557040603
  29. Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, and D. G. Vlachos, Science, 300, 456 (2003)
  30. 본 총설에서는 천연가스(NG)와 메탄을 일부 혼용하였는데 천연가스는 주로 상업적으로 저장할 대상물질로 볼 수 있고 메탄은 천연가스 대신에 주로 연구의 편의를 위해 사용함. 메탄이 흡착/저장 될 수 있는 경우에 에탄 등의 천연가스의 다른 성분의 흡착/저장은 매우 용이하기에 연구는 보통 메탄으로 수행함
  31. K. Seki, Chem. Commun., 1496 (2001)
  32. S. L. James, Chem. Soc. Rev., 32, 276 (2003) https://doi.org/10.1039/b200393g
  33. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Science, 295, 469 (2002) https://doi.org/10.1126/science.1067208
  34. A. Celzard and V. Fierro, Energy Fuel, 19, 573 (2005) https://doi.org/10.1021/ef040045b
  35. G. F\acute{e}rey, C. Mellot-Draznieks, C. Serre, and F. Millange, Acc. Chem. Res., 38, 217 (2005). (b) G. Férey, Chem. Soc. Rev., 37, 191 (2008) https://doi.org/10.1021/ar040163i
  36. U. Vietze, O. Krau$\beta$, F. Laeri, G. Ihlein, F. Sch$\ddot{u}$th, B. Limburg, and M. Abraham, Phys. Rev. Letter, 81, 4628 (1998) https://doi.org/10.1103/PhysRevLett.81.4628
  37. J. S. Lee, J. W. Yoon, Y. K. Hwang, S. H. Jhung, and J.-S. Chang, J. Ind. Eng. Chem., accepted (2008)
  38. S.-I. Noro, S. Kitagawa, M. Kondo, and K. Seki, Angew. Chem., Int. Ed., 39, 2082 (2000)
  39. T. D$\ddot{u}$ren, L. Sarkisov, O. M. Yaghi, and R. Q. Snurr, Langmuir, 20, 2683 (2004) https://doi.org/10.1021/la0355500
  40. M. E. Davis, Nature, 417, 813 (2002) https://doi.org/10.1038/nature00785
  41. S. Kitagawa, R. Kitaura, and S.-I. Noro, Angew. Chem. Int. Ed., 43, 2334 (2004). S. Kitagawa, and K. Uemura, Chem. Soc. Rev., 34, 109 (2005) https://doi.org/10.1002/anie.200300610