Optimization of $\beta$-Galactosidase Production in Stirred Tank Bioreactor Using Kluyveromyces lactis NRRL Y-8279

  • Published : 2009.12.31


This paper investigates the production and optimization of $\beta$-galactosidase enzyme using synthetic medium by Kluyveromyces lactis NRRL Y-8279 in stirred tank bioreactor. Response surface methodology was used to investigate the effects of fermentation parameters on $\beta$-galactosidase enzyme production. Maximum specific enzyme activity of 4,622.7 U/g was obtained at the optimum levels of process variables (aeration rate 2.21 vvm, agitation speed 173.4 rpm, initial sugar concentration 33.8 g/L, incubation time 24.0 hr). The optimum temperature and pH of the $\beta$-galactosidase enzyme produced under optimized conditions were $37^{\circ}C$ and pH 7.0, respectively. The enzyme was stable over a pH range of 6.0-7.5 and a temperature range of $25-37^{\circ}C$. The $K_m$ and $V_{max}$ values for O-nitrophenol-$\beta$-D-galactopyranoside (ONPG) were 1.20 mM and $1,000\;{\mu}mol/min{\cdot}mg$ protein, respectively. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in $\beta$-galactosidase enzyme production. Hence, this study fulfills the lack of using mathematical and statistical techniques in optimizing the $\beta$-galactosidase enzyme production in stirred tank bioreactor.


  1. Boon MA, Riet van't K, Janssen AEM. Enzymatic synthesis of oligosaccharides: Product removal during a kinetically controlled reaction. Biotechnol. Bioeng. 70: 411-420 (2000) https://doi.org/10.1002/1097-0290(20001120)70:4<411::AID-BIT6>3.0.CO;2-W
  2. Dagbagli S, Goksungur Y. Optimization of $\beta$-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electron. J. Biotechnol. [online]. 11(4): 11-12 (2008)
  3. Roukas T, Liakopoulou-Kyriakides M. Production of pullulan from beet molasses by Aureobasidium pullulans in a stirred tank fermentor. J. Food Eng. 40: 89-94 (1999) https://doi.org/10.1016/S0260-8774(99)00043-6
  4. Furlan S, Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R. Formulation of a lactose-free, low cost culture medium for the production of $\beta$-D-galactosidase by Kluyveromyces marxianus. Biotechnol. Lett. 22: 589-593 (2000) https://doi.org/10.1023/A:1005629127532
  5. He YQ, Tan TW. Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. 99-125. J. Mol. Catal. B-Enzym. 43: 9-14 (2006) https://doi.org/10.1016/j.molcatb.2006.02.018
  6. FCC. Lactase ($\beta$-galactosidase) activity. p. 491. In: Food Chemicals Codex. 3rd ed. National Academy Press, Washington, DC, USA (1993)
  7. Furlan SA, Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R. Optimization of pH, temperature, and inoculum ratio for the production of $\beta$-D-galactosidase by Kluyveromyces marxianus using a lactose free medium. Acta Biotechnol. 21: 57-64 (2001) https://doi.org/10.1002/1521-3846(200102)21:1<57::AID-ABIO57>3.0.CO;2-Q
  8. Nawani NN, Kapadnis BP. Optimization of chitinase production using statistics based experimental designs. Process Biochem. 40: 651-660 (2005) https://doi.org/10.1016/j.procbio.2004.01.048
  9. Pinheiro R, Belo I, Mota M. Growth and $\beta$-galactosidase activity in cultures of Kluyveromyces marxianus under increased air pressure. Lett. Appl. Microbiol. 37: 438-442 (2003) https://doi.org/10.1046/j.1472-765X.2003.01429.x
  10. Goksungur Y, Da$\breve{g}$a$\breve{g}$iS, Ucan A, Guvenc U. Optimization of pullulan production from synthetic medium by Aureobasidium pullulans in a stirred tank reactor by response surface methodology. J. Chem. Technol. Biot. 80: 819-827 (2005) https://doi.org/10.1002/jctb.1254
  11. Barberis S, Gentina JC. Effect of dissolved oxygen level on lactase production by Kluyveromyces fragillis. J. Chem. Technol. Biot. 73: 71-73 (1998) https://doi.org/10.1002/(SICI)1097-4660(199809)73:1<71::AID-JCTB924>3.0.CO;2-D
  12. Liu CH, Lu WB, Chang JS. Optimizing lipase of Burkholderia sp. by response surface methodology. Process Biochem. 41: 1940-1944 (2006) https://doi.org/10.1016/j.procbio.2006.04.013
  13. Uma Maheswar Rao JL, Satyanarayana T. Improving production of hyperthermostable and high maltose-forming $\alpha$-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications. Bioresource Technol. 98: 345-352 (2007) https://doi.org/10.1016/j.biortech.2005.12.022
  14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  15. Samoshina NM, Samoshin VV. The Michaelis constants ratio for two substrates with a series of fungal (mould and yeast) $\beta$-galactosidases. Enzyme Microb. Tech. 36: 239-251 (2005) https://doi.org/10.1016/j.enzmictec.2004.07.011
  16. Santos A, Ladero M, Garcia-Ochoa F. Kinetic modeling of lactose hydrolysis by a $\beta$-galactosidase from Kluyveromyces fragilis. Enzyme Microb. Tech. 22: 558-567 (1998) https://doi.org/10.1016/S0141-0229(97)00236-6
  17. Fujimura Y, Rokushika S, Ohnishi M. Purification and molecular characterization of $\beta$-galactosidase from yeast Kluyveromyces lactis. J. Biol. Macromol. 3: 97-103 (2003) https://doi.org/10.1016/0141-8130(81)90074-X
  18. Chen KC, Lee TC, Houng JY. Search method for the optimal medium for the production of lactase by Kluyveromyces fragillis. Enzyme Microb. Tech. 14: 659-664 (1992) https://doi.org/10.1016/0141-0229(92)90043-N
  19. Potumarthi R, Ch S, Jetty A. Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: Effect of aretion and agitation regimes. Biochem. Eng. J. 34: 185-192 (2007) https://doi.org/10.1016/j.bej.2006.12.003
  20. Ibrahim HM, Yusoff WMW, Hamid AA, Illias RM, Hassan O, Omar O. Optimization of medium for the production of $\beta$-cyclodextrin glucanotransferase using central composite desing (CCD). Process Biochem. 40: 753-758 (2005) https://doi.org/10.1016/j.procbio.2004.01.042
  21. Manera AP, Ores JD, Ribeiro VA, Andre C, Burkert V, Kalil SJ. Optimization of the culture medium for the production of $\beta$-galactosidase from Kluyveromyces marxianus CCT 7082. Food Technol. Biotech. 46: 66-72 (2008)
  22. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 (1959) https://doi.org/10.1021/ac60147a030
  23. Rech R, Cassini CF, Secchi A, Ayub MAZ. Utilization of proteinhydrolyzed cheese whey for production of $\beta$-galactosidase by Kluyveromyces marxianus. J. Ind. Microbiol. Biot. 23: 91-96 (1999) https://doi.org/10.1038/sj.jim.2900692
  24. Ornelas AP, Silveira WB, Sampaio FC, Passos FML. The activity of $\beta$-galactosidase and lactose metabolism in Kluyveromyces lactis cultured in cheese whey as a function of growth rate. J. Appl. Microbiol. 104: 1008-1013 (2008) https://doi.org/10.1111/j.1365-2672.2007.03622.x
  25. Tari C, Gogus N, Tokatli F. Optimization of biomass, pellet size, and polygalacturonase production by Aspergillus sojae ATCC 20235 using response surface methodology. Enzyme Microb. Tech. 40: 1108-1116 (2007) https://doi.org/10.1016/j.enzmictec.2006.08.016
  26. Gao H, Gu WY. Optimization of polysaccharide and ergosterol production from Agaricus brasiliensis by fermentation process. Biochem. Eng. J. 33: 202-210 (2007) https://doi.org/10.1016/j.bej.2006.10.022
  27. Inchaurrondo VA, Yantorno OM, Voget CE. Yeast growth and $\beta$-galactosidase production during aerobic batch cultures in lactoselimited synthetic medium. Process Biochem. 29: 47-54 (1994) https://doi.org/10.1016/0032-9592(94)80058-8
  28. Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R, Furlan S. Oxygen transfer on $\beta$-D-galactosidase production by Kluyveromyces marxianus using sugar cane molasses as carbon source. Biotechnol. Lett. 23: 547-550 (2001) https://doi.org/10.1023/A:1010338904870
  29. Myers RH, Montgomery DD. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley&Sons, Inc., New York, NY, USA. p. 700 (1995)
  30. Battestin V, Macedo GA. Tannase production by Paecilomyces variotii. Bioresource Technol. 98: 1832-1837 (2007) https://doi.org/10.1016/j.biortech.2006.06.031
  31. Cavaille D, Combes D. Characterization of $\beta$-galactosidase from Kluyveromyces lactis. Biotechnol. Appl. Bioc. 22: 55-64 (1995)
  32. Albayrak N, Yang ST. Production of galacto-oligosaccharides from lactose by Aspergillus oryzae $\beta$-galactosidase immobilized on cotton cloth. Biotechnol. Bioeng. 77: 8-19 (2002) https://doi.org/10.1002/bit.1195
  33. Lazaridou A, Roukas T, Billiaderis CG, Vaikousi H. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in stirred tank reactor under varying agitation. Enzyme Microb. Tech. 31: 122-132 (2002) https://doi.org/10.1016/S0141-0229(02)00082-0
  34. Naessens M, Vercauteren R, Vandamme EJ. Three-factor response surface optimization of the production of intracellular dextran dextrinase by Gluconobacter oxydans. Process Biochem. 39: 1299-1304 (2004) https://doi.org/10.1016/j.procbio.2003.08.001
  35. Li L, Zhang M, Jiang Z, Tang L, Cong Q. Characterization of a thermostable family 42 $\beta$-galactosidase from Thermotoga maritime. Food Chem. 112: 844-850 (2009) https://doi.org/10.1016/j.foodchem.2008.06.058
  36. Chen W, Chen H, Xia Y, Zhao J, Tian F, Zhang H. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J. Dairy Sci. 91: 1751-1758 (2008) https://doi.org/10.3168/jds.2007-617
  37. Cortes G, Trujillo-Roldan MA, Ramirez OT, Galindo E. Production of $\beta$-galactosidase by Kluyveromyces marxianus under oscillating dissolved oxygen tension. Process Biochem. 40: 773-778 (2005) https://doi.org/10.1016/j.procbio.2004.02.001
  38. Martins DBG, de Souza Jr CG, Simoes DA, de Morais Jr MA. The $\beta$-galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose. Curr. Microbiol. 44: 379-382 (2002) https://doi.org/10.1007/s00284-001-0052-2
  39. Barberis SE, Segovia RF. Dissolved oxygen concentration-controlled feeding of substrate into Kluyveromyces fragilis culture. Biotechnol. Tech. 11: 797-799 (1997) https://doi.org/10.1023/A:1018421123983
  40. Domingues L, Lima N, Teixeira JA. Aspergillus niger $\beta$-galactosidase production by yeast in a continous high cell density reactor. Process Biochem. 40: 1151-1154 (2005) https://doi.org/10.1016/j.procbio.2004.04.016
  41. Takahashi T, Sugahara T, Yamaya S. Purification and characterization of a $\beta$-galactosidase from Treponema phagedenis (Reiter strain). Curr. Microbiol. 8: 341-345 (1983) https://doi.org/10.1007/BF01573706
  42. Shaikh SA, Khire JM, Khan MI. Production of $\beta$-galactosidase from thermophilic fungus Rhizomucor sp. J. Ind. Microbiol. Biot. 19: 239-245 (1997) https://doi.org/10.1038/sj.jim.2900452
  43. Linko S, Enwald S, Zhu YH, Mayra-Makinen. Production of $\beta$-galactosidase by Streptococcus salivarius subsp thermophilus 11F. J. Ind. Microbiol. Biot. 20: 215-219 (1998) https://doi.org/10.1038/sj.jim.2900515
  44. Fleming M, Barron N, McHale L, Marchant R, McHale AP. Studies on the growth of a thermotolerant yeast strain, Kluyveromyces marxianus IMB3, on sucrose containing media. Biotechnol. Lett. 15: 1195-1198 (1993) https://doi.org/10.1007/BF00130296
  45. Goksungur Y, Mantzouridou F, Roukas T, Kotzekidou P. Production of $\beta$-carotene from beet molasses by Blakeslea trispora in stirredtank and bubble column reactors. Appl. Biochem. Biotech. 112: 37-54 (2004) https://doi.org/10.1385/ABAB:112:1:37