Pectolytic Enzymes of the Industrial Fungus Aspergillus kawachii

  • Published : 2009.12.31

Abstract

Aspergillus kawachii extracellular pectinases were screened in liquid cultures with different carbon sources. The fungus grown on citrus pectin or lemon pomace produced at least one of these inducible pectinases: acidic polygalacturonase, pectin lyase, pectin methylesterase, $\alpha$-L-arabinofuranosidase, $\alpha$-1,5-endoarabinase, $\beta$-D-galactosidase/exogalactanase, and $\beta$-1,4-endogalactanase. The lemon-pomace filtrates also contained significant $\alpha$-L-rhamnosidase and $\beta$-D-fucosidase activities. Most of the screened pectinases were active at pH 2.0-2.5, indicating that the A. kawachii enzymes were acidophilic. Under the culture conditions employed we could not detect enzymatic degradation of soybean rhamnogalacturonan. The A. kawachii pectinase-production-related regulatory phenomena of induction-repression resemble those described for other Aspergillus sp.

References

  1. Iwashita K, Todoroki K, Kmura H, Shimoi H, Ito K. Purification and characterization of extracellular cell wall bound $\beta$-glucosidases from Aspergillus kawachii. Biosci. Biotech. Bioch. 62: 1938-1946 (1998) https://doi.org/10.1271/bbb.62.1938
  2. Kojima Y, Sakamoto T, Kishida M, Sakai T, Kawasaki H. Acid condition-inducible polygalacturonase of Aspergillus kawachii. J. Mol. Catal. B: Enzym. 6: 351-357 (1999) https://doi.org/10.1016/S1381-1177(98)00120-9
  3. Contreras Esquivel JC, Voget CE. Purification and characterization of an acidic polygalacturonase from Aspergillus kawachii. J. Biotechnol. 110: 21-28 (2004) https://doi.org/10.1016/j.jbiotec.2004.01.010
  4. Voget CE, Vita CE, Contreras Esquivel JC. One-step concentration and partial purification of non-acidic Aspergillus kawachii polygalacturonases by adsorption to glass fiber microfilters. Biotechnol. Lett. 28: 233-239 (2006) https://doi.org/10.1007/s10529-005-5524-1
  5. Albersheim P. Pectin lyase from fungi. Vol. 8, pp. 628-631. In: Methods in Enzymology. Neufeld EF, Guinsburg V (eds). Academic Press, San Diego, CA, USA (1966)
  6. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  7. Voragen AGJ, Beldman G, Schols H. Chemistry and enzymology of pectins. pp. 19-23. In: Advanced Dietary Fiber Technology. McCleary BV, Prosky L (eds). Blackwell Publishing, Oxford, UK (2001)
  8. Hayashi T. The pectin enzyme produced by microorganisms. I. Pectin galacturonase from Aspergillus kawachii. J. Ferment. Technol. 36: 246-248 (1958)
  9. Koseki T, Mese Y, Nishibori N, Masaki K, Fujii T, Handa T, Yamane Y, Shiono Y, Murayama T, Iefuji H. Characterization of an alpha-L-rhamnosidase from Aspergillus kawachii and its gene. Appl. Microbiol. Biot. 80: 1007-1013 (2008) https://doi.org/10.1007/s00253-008-1599-7
  10. Ito K, Ogasawa H, Sugimoto T, Ishikawa T. Purification and properties of acid stable xylanases from Aspergillus kawachii. Biosci. Biotech. Bioch. 56: 547-550 (1992) https://doi.org/10.1271/bbb.56.547
  11. Herber D, Phipps P, Strange P. Chemical analysis of microbial cells. Vol. 5B, pp. 210-344. In: Methods in Microbiology. Norris J, Ribbons D (eds). Academic Press, London, UK (1971)
  12. Schols HA, Geraeds CCJM, Searle-van Leeuwen MF, Kormelink FJM, Voragen AGJ. Rhamnogalacturonase: A novel enzyme that degrades the hairy regions of pectins. Carbohyd. Res. 206: 105-115 (1990) https://doi.org/10.1016/0008-6215(90)84010-R
  13. Kitamoto K. Molecular biology of koji molds. Adv. Appl. Microbiol. 51: 129-146 (2002) https://doi.org/10.1016/S0065-2164(02)51004-2
  14. Koseki T, Okuda M, Sudoh S, Kizaki Y, Iwano K, Aramaki I, Matsuzawa H. Role of two $\alpha$-L-arabinofuranosidases in arabinoxylan degradation and characteristics of the encoding genes from shochu koji molds, Aspergillus kawachii, and Aspergillus awamori. J. Biosci. Bioeng. 96: 232-241 (2003)
  15. Yagi F, Fan J, Tadera K, Kobayashi A. Purification and characterization of carboxyl proteinase from Aspergillus kawachii. Agr. Biol. Chem. Tokyo 50: 1029-1033 (1986) https://doi.org/10.1271/bbb1961.50.1029
  16. Iwano K, Mikami S, Fukuda K, Shiinoki S, Shimada T. The properties of various enzymes of shochu koji (Aspergillus kawachii). J. Brew. Soc. Jpn. 81: 490-494 (1986) https://doi.org/10.6013/jbrewsocjapan1915.81.490
  17. Klavons J, Bennett R. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. J. Agr. Food. Chem. 34: 597-599 (1986) https://doi.org/10.1021/jf00070a004
  18. Mikami S, Iwano K, Shinoki S, Shimada T. Purification and some properties of acid-stable $\alpha$-amylases from shochu koji (Aspergillus kawachii). Agr. Biol. Chem. Tokyo 51: 2495-2501 (1987) https://doi.org/10.1271/bbb1961.51.2495
  19. de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. R. 65: 497-522 (2001) https://doi.org/10.1128/MMBR.65.4.497-522.2001
  20. Haard FN, Odunfa SA, Cherl-Ho L, Quinteros-Ramirez R, Lorence-Quinones A, Wacher-Radarte C. Fermented cereals. A global perspective. FAO Agricultural Services Bulletin No 138, Food and Agricultural Organization, Rome, Italy (1999)
  21. Nagamine K, Murashima K, Kato T, Shimoi H, Ito K. Mode of $\alpha$-amylase production by the shochu koji mold Aspergillus kawachii. Biosci. Biotech. Bioch. 67: 2194-2202 (2003) https://doi.org/10.1271/bbb.67.2194
  22. Ride JP, Drysdale RB. A rapid method for the chemical estimation of filamentous fungi in plant tissue. Physiol. Plant Pathol. 2: 7-15 (1972) https://doi.org/10.1016/0048-4059(72)90043-4
  23. Saha BC. $\alpha$-L-Arabinofuranosidases: Biochemistry, molecular biology, and application in biotechnology. Biotechnol. Adv. 18: 403-423 (2000) https://doi.org/10.1016/S0734-9750(00)00044-6