Optimal strategies for collective Parrondo games

집단 파론도 게임의 최적 전략

  • Lee, Ji-Yeon (Department of Statistics, Yeungnam University)
  • Published : 2009.11.30

Abstract

Two losing games that can be combined, either by periodic alternation or by random mixture, to form a winning game are known as Parrondo games. We consider a collective version of Parrondo games in which players are allowed to choose the game to be played by the whole ensemble in each turn. In this paper, we analyze the long-range optimization strategy for all choices of the parameters and find the expected average profit in the steady state.

References

  1. 김혜경, 박준표 (2009). 일반화된 분수 지배게임에 대한 균형성. <한국데이터정보과학회지>, 20, 49-55.
  2. Abbott, D. (2009). Developments in Parrondo’s paradox. In Applications of Nonlinear Dynamics: Model and Design of Complex Systems, Series: Understanding Complex Systems, Ed. In, V., Longhini, P., and Palacios, A., Springer-Verlag, New York.
  3. Dinis, L. (2008). Optimal sequence for Parrondo games. Physical Review E, 77, 021124. https://doi.org/10.1103/PhysRevE.77.021124
  4. Dinis, L. and Parrondo, J. M. R. (2003). Optimal strategies in collective Parrondo games. Europhysics Letters, 63, 319-325. https://doi.org/10.1209/epl/i2003-00461-5
  5. Dinis, L. and Parrondo, J. M. R. (2004). Inefficiency of voting in Parrondo games. Physica A, 343, 701-711. https://doi.org/10.1016/j.physa.2004.06.076
  6. Epstein, R. A. (2007). Parrondo’s principle: An overview. In Optimal Play: Mathematical Studies of Games and Gambling, Ed. Ethier, Stewart N. and Eadington, William R., 471-492, Institute for the Study of Gambling and Commercial Gaming, University of Nevada, Reno.
  7. Ethier, S. N. and Lee, J. (2009a). Limit theorems for Parrondo's paradox. Electronic Journal of Probability, 14, Paper no. 62, 1827-1862.
  8. Ethier, S. N. and Lee, J. (2009b). A Markovian slot machine and Parrondo’s paradox. Annals of Applied Probability (to appear).
  9. Kim, H. K. and Lee, D. S. (2007). Characterizations of the cores of integer total domination games. Journal of the Korean Data & Information Science Society, 18, 1115-1121.
  10. Parrondo, J. M. R. (1996). How to cheat a bad mathematician. In EEC HC&M Network on Complexity and Chaos, Institute for Scientific Interchange Foundation, Torino, Italy.
  11. Parrondo, J. M. R., Dinis, L., Garcia-Torano, E. and Sotillo, B. (2007). Collective decision making and paradoxical games. European Physical Journal Special Topics, 143, 39-46. https://doi.org/10.1140/epjst/e2007-00068-0
  12. Reed, F. A. (2007). Two-locus epistaxis with sexually antagonistic selection: A genetic Parrondo’s paradox. Genetics, 176, 1923-1929. https://doi.org/10.1534/genetics.106.069997
  13. Spurgin, R. and Tamarkin, M. (2005). Switching investments can be a bad idea when Parrondo’s paradox applies. Journal of Behavioral Finance, 6, 15-18. https://doi.org/10.1207/s15427579jpfm0601_3
  14. Van den Broeck, C. and Cleuren, B. (2004). Parrondo games with strategy. In Noise in Complex Systems and Stochastic Dynamics II. SPIE, Ed. Gingl, Z., Sancho, J. M., Schimansky-Geier, L. and Kertesz, J., Bellingham, WA.