Journal of the Korean Data and Information Science Society
- Volume 20 Issue 6
- /
- Pages.1015-1027
- /
- 2009
- /
- 1598-9402(pISSN)
$Gr\ddot{o}bner$ basis versus indicator function
그뢰브너 기저와 지시함수와의 관계
- Kim, Hyoung-Soon (Department of Mathematics, Yonsei University) ;
- Park, Dong-Kwon (Department of Information and Statistics, Yonsei University)
- Published : 2009.11.30
Abstract
Many problems of confounding and identifiability for polynomial models in an experimental design can be solved using methods of algebraic geometry. The theory of
Keywords
File
References
- Cox, D., Little, J. and O’Shea, D. (1992). Ideal, varieties, and algorithms, Spring-Verlag, New York.
- Fontana, R., Pistone, G. and Rogantin, M. P. (2000). Classification of two-level factorial fractions. Journal of Statistical Planning and Inference, 87, 149-172. https://doi.org/10.1016/S0378-3758(99)00173-1
- Park, D. K. and Kim, H. (2003). A New approach for selecting fractional factorial designs. Journal of the Korean Data & Information Science Society, 14, 707-714.
- Pistone, G., Riccomagno, E. and Rogantin, M. P. (2006). Algebraic statistics method for DOE, Unpublished Manuscript.
- Pistone, G. and Rogantin, M. P. (2008). Indicator function and complex coding for mixed fractional factorial designs. Journal of Statistical Planning and Inference, 138, 107-121.
- Pistone, G. and Wynn, H. P. (1996). Generalized confounding with Gr¨obner bases. Biometrika, 83, 653-666. https://doi.org/10.1093/biomet/83.3.653
- Plackett, R. L. and Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33, 305-325. https://doi.org/10.1093/biomet/33.4.305
- Ye, K. Q. (2003). Indicator functions and its application in two-level factorial designs. Annals of Statistics, 31, 984-994 https://doi.org/10.1214/aos/1056562470
- Zhang, R. and Park, D. K (2000). Optimal blocking of two-level fractional factorial designs. Journal of Statistical Planning and Inference, 91, 107-121. https://doi.org/10.1016/S0378-3758(00)00133-6