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Abstract

In this paper, we develop noninformative priors for two parameter Pareto distri-
bution. Specially, we derive Jeffreys’ prior, probability matching prior and reference
prior for the parameter of interest. In our case, the probability matching prior is only
a first order matching prior and there does not exist a second order matching prior. S
ome simulation reveals that the matching prior performs better to achieve the coverage
probability. A real example is also considered.

Keywords: Jeffreys’ prior, Pareto distribution, probability matching prior, reference
prior.

1. Introduction

The Pareto distribution has found applications in modeling problems involving distribu-
tions of income when incomes exceed a certain limit.

Many socio-economic and other naturally occurring quantities are distributed according
to certain statistical distributions with very long right tails. Examples of some of these
empirical phenomena are distributions of city population sizes, occurrence of natural re-
sources, stock price fluctuations, size of firms, personal incomes, and error clustering in
communication circuits.

Many distributions have been developed in an attempt to model such real life data. The
Pareto and lognormal distributions have played a major part in these investigations. It has
been observed that while the fit of the Pareto curve may be rather good at the extremities of
the income range, the fit over the whole range is often rather poor. On the other hand, the
lognormal distribution fits well over a larger part of the income range but diverges markedly
at the extremities.

For economists concerned with upper tails of distributions, the Pareto distribution is
probably more useful than the lognormal which generally gives poor fit in the tails.
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The Pareto distribution is reverse J-shaped and positively skewed with a decreasing hazard
rate. Although the family was originally applied to analyzing certain socio-economic and
nature phenomena with observations in long tails, the family has potential for modelling
reliability and life time data as well (Arnold and Press, 1983).

A number of authors have studied Bayesian inference procedures for this distribution,
e.g., Arnold and Press (1983, 1989a, 1989b); Geisser (1984, 1985); Lwin (1972); Nigam and
Hamdy (1987) and Tiwari, Yang and Zalkikar (1996).

Arnold and Press (1989b) studied the Bayesian estimation problem using the independent
conjugate prior and modified Lwin prior. Recently, Soliman (2001) studied the Bayesian
estimation of Pareto distribution with scale and shape parameters in various situations. He
considered squarred error loss and LINEX loss for estimating parameters using subjective
priors such as conjugate prior and Gamma-exponential priors.

But there are situations when one is forced to use noninformative priors such as Jeffreys’,
reference or matching priors because the prior information for the parameters may not be
enough.

There is a great deal of efforts for finding noninformative or objective priors for various
statistical models. Jeffreys’ prior was quite successful in many Bayesian inference, but it
causes problems when the nuisance parameters are present.

Recently, significant advances are made in the development of noninformative priors via
reference or probability matching priors. These noninformative priors work well in many
statistical problems when the nuisance parameters are present.

Berger and Bernardo (1989, 1992) extended Bernardo (1979) reference prior approach,
giving a general algorithm to derive a reference prior by splitting the parameters into several
groups according to their order of inferential importance. On the other hand, Welch and
Peers (1963); Peers (1965) and Stein (1985) found a prior which meet the frequentist coverage
probability of the posterior region of a real-valued parametric function to match the nominal
level with a reminder of o(n−

1
2 ), where n is the sample size. Tibshirani (1989) reconsidered

the case when the real valued parameter of interest is orthogonal (in the sense of Cox and
Reid (1987)) to the nuisance parameter vector. These priors, as usually referred to as ‘first
order’ matching priors, were further studied in Datta and Ghosh (1995a, 1995b, 1996).
Recently, Mukerjee and Ghosh (1997) developed a ‘second order’, that is o(n−1), matching
prior. They extended the result in Mukerjee and Dey (1993) to the case of multiple nuisance
parameters based on quantiles, and also developed a second order matching prior based on
distribution function.

In this paper, we derive Jeffreys’ prior, reference prior and matching prior for the two-
parameter Pareto distribution. We show that when the parameter of interest is given, there
does not exist a second order matching priors. Posterior propriety under the proposed non-
informative priors will be given. And also, some examples are given including coverage
probabilities using artificial data.

2. Development of noninformative priors

LetX be the two-parameter Pareto Distribution with parameters α and β. The probability
density function of X is given by,

f(x;α, β) = αβα(x+ β)−(α+1), x > 0; (α > 0, β > 0), (2.1)
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where α is the shape parameter and β is the scale parameter.
Including Jeffreys’ prior, we will find the probability matching prior and reference prior

when the parameter of interest is α or β.
Let I(α, β) be the information matrix of α and β per observation. Then

I(α, β) =

(
1
α2 − 1

β(α+1)

− 1
β(α+1)

α
β2(α+2)

)
. (2.2)

Suppose that we are interested in estimating the parameter α. Then α is the parameter of
interest and β is the nuisance parameter. Consider the following reparametrization, which
give the orthogonality of parameters in the sense of Cox and Reid (1987). Let

ω1 = α, ω2 = β
1 + α

α2
.

Then the information matrix of (ω1, ω2) per observation is given by

I(ω1, ω2) =

(
1

(1+ω1)2ω2
1

0
0 ω1

(ω1+2)ω2
2

)
. (2.3)

From the above information matrix, one can find various noninformative priors, given
below when the parameter of interest is α.

The Jeffreys’ prior πJ(ω1, ω2) is given by

πJ(ω1, ω2) ∝ 1
ω2(1 + ω1)

√
ω1(2 + ω1)

, ω1, ω2 > 0. (2.4)

The class of first order matching priors is given by

πM (ω1, ω2) ∝ 1
ω1(1 + ω1)

g(ω2), ω1, ω2 > 0, (2.5)

where g(·)(> 0) is arbitrary differentiable function in its argument.
Finally, following Datta and Ghosh (1995b), the reference prior is given by

πR(ω1, ω2) ∝ 1
(1 + ω1)ω1ω2

, ω1, ω2 > 0. (2.6)

Remark 2.1 One can easily find the fact that the reference prior satisfies the first order
matching criterion (Datta and Ghosh, 1995b).

The class of prior given in (2.6) is quite large, and it is necessary to narrow down this
class of priors. To this end, we consider the class of second order probability matching priors
as given in Mukerjee and Ghosh (1997). A second order probability matching prior for ω1

satisfies
1
6
g(ω2)

d

dω1

(
i
−3/2
11 L1,1,1

)
+

d

dω2

(
i
−1/2
11 L112i

22g(ω2)
)

= 0, (2.7)

where iab is the a-th row and b-th column element of inverse of information matrix I(ω1, ω2),
and

L1,1,1 = E

[(
∂ logL
∂ω1

)3
]
, L112 = E

[
∂3 logL
∂ω2

1∂ω2

]
,
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and

L(ω1, ω2) = logω1 + ω1 logω2 + 2ω1 logω1 − ω1 log(1 + ω1)

−(ω1 + 1) log(x+
ω2

1ω2

1 + ω1
).

In our case,

L1,1,1 = − 2(3 + 5ω1)
ω3

1(1 + ω1)3(ω1 + 3)
,

and
L112 =

2
ω1ω2(1 + ω1)(2 + ω1)(3 + ω1)

.

Using the fact that i22 = (ω1+2)ω2
2

ω1
, the equation (2.7) reduces to

g(ω2)
2

ω1 + 3
+

1
ω1

d

dω2
(ω2g(ω2)) = 0.

There does not exist any function g(ω2) which satisfies the above differential equation.
So, there does not exist a second order matching prior when the parameter of interest is α.

The priors (2.4),(2.5) and (2.6) can be re-expressed in terms of the original parameters α
and β. For α, β > 0,

πJ(α, β) ∝ 1
β(1 + α)

√
α(α+ 2)

πM (α, β) ∝ 1
α3

πR(α, β) ∝ 1
βα(1 + α)

.

Now, we will prove the propriety of the posterior distributions under Jeffreys, reference
and matching priors when the parameter of interest is α.

Theorem 2.1 When the parameter of interest is α, the general form of the above nonin-
formative priors can be written as

πa,b,c,d(α, β) = α−aβ−b(α+ 1)−c(α+ 2)−d, a > 0, 0 ≤ b ≤ 1, c ≥ 0, d ≥ 0.

Then, the posterior under the general form of noninformative prior is finite, if (i) for 0 ≤
b < 1, n+ b > 1, a+ c+ d > 2 and n+ 1− a− c− d > 0 or (ii) for b = 1, a+ c+ d > 1 and
n− a− c− d > 0.

Proof : The joint posterior distribution under the above prior is

πa,b,c,d(α, β|x) ∝ αn−aβnα−b(α+ 1)−c(α+ 2)−d
n∏
i=1

(xi + β)−(α+1).
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Let y = minimum(x1, x2, · · · , xn). Then

πa,b,c,d(α, β|x) ≤ αn−aβnα−b(α+ 1)−c(α+ 2)−d(y + β)−n(α+1).

Hence, ∫ ∞
0

∫ ∞
0

πa,b,c,d(α, β|x)dβdα

≤
∫ ∞

0

∫ ∞
0

αn−aβnα−b(α+ 1)−c(α+ 2)−d(y + β)−n(α+1)dβdα

=
∫ ∞

0

αn−a(α+ 1)−c(α+ 2)−d
∫ ∞

0

βnα−b(y + β)−n(α+1)dβdα.

Letting β
y+β = t, the integration∫ ∞

0

βnα−b(y + β)−n(α+1)dβ = yb−n+1Beta(nα− b+ 1, n+ b− 1),

if n+ b− 1 > 0.
For the case: 0 ≤ b < 1,∫ ∞

0

αn−a(α+ 1)−c(α+ 2)−d
∫ ∞

0

βnα−b(y + β)−n(α+1)dβdα

= yb−n+1

∫ ∞
0

αn−a(α+ 1)−c(α+ 2)−dBeta(nα− b+ 1, n+ b− 1)dα

= yb−n+1Γ(n+ b− 1)
∫ ∞

0

αn−a(α+ 1)−c(α+ 2)−d
Γ(nα− b+ 1)

Γ(nα+ n)
dα

< yb−n+1Γ(n+ b− 1)
∫ ∞

0

αn−a(α+ 1)−c(α+ 2)−d
Γ(nα+ 1)
Γ(nα+ n)

dα.

Since,
Γ(nα+ n) = (nα+ n− 1) · · · (nα+ 1)Γ(nα+ 1),

then, ∫ ∞
0

αn−a(α+ 1)−c(α+ 2)−d
Γ(nα+ 1)
Γ(nα+ n)

dα =
∫ ∞

0

αn−a(α+ 1)−c(α+ 2)−d

(nα+ n− 1) · · · (nα+ 1)
dα.

We know that
(α+ 1)−c(α+ 2)−d < α−c−d

and
[(nα+ n− 1) · · · (nα+ 1)]−1 < (nα+ 1)−(n−1).

Therefore, ∫ ∞
0

αn−a(α+ 1)−c(α+ 2)−d
Γ(nα+ 1)
Γ(nα+ n)

dα

<

∫ ∞
0

αn−a−c−d(nα+ 1)−(n−1)dα

= na+c+d−n−1 Γ(a+ c+ d− 2)Γ(n+ 1− a− c− d)
Γ(n− 1)

<∞,
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if a+ c+ d > 2 and n+ 1− a− c− d > 0.
For the case: b = 1,∫ ∞

0

αn−a(α+ 1)−c(α+ 2)−d
∫ ∞

0

βnα−1(y + β)−n(α+1)dβdα

= y−n+2

∫ ∞
0

αn−a(α+ 1)−c(α+ 2)−dBeta(nα, n)dα

= y−n+2Γ(n)
∫ ∞

0

αn−a(α+ 1)−c(α+ 2)−d
Γ(nα)

Γ(nα+ n)
dα.

Since,
Γ(nα+ n) = (nα+ n− 1) · · · (nα)Γ(nα),

then, ∫ ∞
0

αn−a(α+ 1)−c(α+ 2)−d
Γ(nα)

Γ(nα+ n)
dα =

∫ ∞
0

αn−a(α+ 1)−c(α+ 2)−d

(nα+ n− 1) · · · (nα)
dα.

We know that
(α+ 1)−c(α+ 2)−d < α−c−d

and
[(nα+ n− 1) · · · (nα+ 1)]−1 < (nα+ 1)−(n−1).

Therefore, ∫ ∞
0

αn−a(α+ 1)−c(α+ 2)−d
Γ(nα)

Γ(nα+ n)
dα

<

∫ ∞
0

1
n
αn−a−c−d−1(nα+ 1)−(n−1)dα

= na+c+d−n−1 Γ(a+ c+ d− 1)Γ(n− a− c− d)
Γ(n− 1)

<∞,

if a+ c+ d > 1 and n− a− c− d > 0. This completes the proof. �

When the parameter of interest is β, we derive the probability matching prior, and ref-
erence prior. In this case, we know that Jeffereys’ prior is the same as the case when the
parameter of interest is α.

From the information matrix for (α, β) given in (2.2), following Peers (1965), the first
order matching prior πm for β is the solution of the following partial differential equation.

∂

∂α
α3/2
√
α+ 2πm +

∂

∂β

β(α+ 1)
√
α+ 2√

α
πm = 0. (2.8)

A solution of the above partial differential equation is given by

πm(α, β) ∝ 1
βα3/2

√
α+ 2

, α > 0, β > 0. (2.9)

This is the first order matching prior when the parameter of interest is β.
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Remark 2.2 We checked that whether the above first order matching prior (2.9) satisfies
the second order matching criterion in Mukerjee and Dey (1993) or not, but, after long
calculation, we found that it did not satisfy the criterion.

Berger and Bernardo (1989) gave an algorithm for deriving a reference prior for problems
with nuisance parameters. We will derive the reference prior when β is of interest.

From the information matrix, one can obtain the reference prior for α with given β as
follows:

π(α|β) =
1
α
.

Choose a sequence of compact sets for (β, α) by (l1i, l2i) × (k1i, k2i), so that l1i, k1i → 0
and l2i, k2i → ∞ as i → ∞. Let IA be the indicator of a set A. The conditional prior of α
given β is

πi(α|β) =
1
αI(k1i,k2i)(α)∫ k2i

k1i

1
αdα

=
I(k1i,k2i)(α)

α[log(k2i)− log(k1i)]
,

and the marginal reference prior for β is

πi(β) = exp

{
1

2[log(k2i)− log(k1i))]

∫ k1i

k2i

1
α

log
(

α

(α+ 1)2(α+ 2)

)
dα

}
× 1
β
.

Following Berger and Bernardo (1989), the reference prior for {β, α} is

πr(β, α) = lim
i→∞

πi(β)πi(α|β)
πi(β0)πi(α0|β0)

=
1
αβ

. (2.10)

Here (α0, β0) = (1, 1).
Now, we will show that the first order matching prior given in (2.9) gives a proper posterior

distribution but the reference prior given in (2.10) does not.

Theorem 2.2 Under the prior πm(α, β), the joint posterior distribution of (α, β) is proper
if n− 3

2 > 0.

Proof : By Theorem 2.1., it is obvious. �

Theorem 2.3 Under the reference prior πr(α, β), the joint posterior is improper.

Proof : The joint posterior distribution under the reference prior is proportional to

πr(α, β|x) ∝ αn−1βnα−1
n∏
i=1

(xi + β)−(α+1).

Now, let z be the maximum of x1, x2, · · · , xn. Then∫ ∞
0

∫ ∞
0

αn−1βnα−1
n∏
i=1

(xi + β)−(α+1)dαdβ ≥
∫ ∞

0

∫ ∞
0

αn−1βnα−1

(z + β)n(α+1)
dαdβ

=
Γ(n)
nzn

∫ ∞
0

αn−2
n−1∏
j=1

(nα+ j)−1dα

>
Γ(n)
nzn

∫ ∞
0

αn−2(nα+ n)−(n−1)dα,
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and,
Γ(n)
nzn

∫ ∞
0

αn−2(nα+ n)−(n−1)dα =
Γ(n)
nnzn

∫ 1

0

kn−2(1− k)−1dk =∞.

So, the joint posterior distribution under reference prior is improper. �

3. Simulations and example

In this section, we will compare the coverage probability of the proposed noninformative
priors. Using the proposed noninformative priors, we will analyze the real data.

When the parameter of interest is α, the coverage probabilities of the priors are given in
Table 3.1.

In Table 3.1., under the moderate sample size, one can see that πM and πR match the target
coverage probabilities’ 0.05 and 0.95, well. But the Jeffreys’ prior πJ does not. Specially,
the coverage probability of the reference prior is better than other priors. This is because
πR satisfies the first order matching criterion.

Table 3.1 Coverage Probabilities of Priors for α
n πM πJ πR
10 .0318000 1.0000000 .0000000 .9708000 .0000000 .9558000
20 .0442000 .9905000 .0332000 .9615000 .0144000 .9469000
30 .0500000 .9673000 .0531000 .9555000 .0364000 .9450000
40 .0447000 .9558000 .0634000 .9597000 .0452000 .9494000
50 .0459000 .9517000 .0644000 .9597000 .0492000 .9506000

In Table 3.2., when the parameter of interest is β, the coverage probability of matching
prior πm matches the target coverage well. But the Jeffreys’ prior does not match the target
coverage.

Table 3.2 Coverage Probabilities of Priors for β
n πm πJ
10 .0025000 .9524000 .0105000 .9751000
20 .0209000 .9486000 .0415000 .9651000
30 .0348000 .9463000 .0585000 .9613000
40 .0456000 .9480000 .0679000 .9612000
50 .0499000 .9486000 .0672000 .9605000

Example 3.1 We will illustrate Bayesian analysis using proposed noninformative priors.
The data given below are annual wage data. Arnold and Press (1989b) analyzed these data.
Specially, Arnold and Press (1989b) used Bayesian set up for analyzing the data. Annual
wage data (in multiples of 100 U.S. dollars) of a random sample 30 production-line workers
in a large industrial firm were as follows:

112 154 119 108 112 156 123 103 115 107 125 119 128
132 107 151 103 104 116 140 108 105 158 104 119 111
101 157 112 115

The Bayes estimators of α and β under the proposed priors are as follows:
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α β
πJ 4.741 526.731
πM 4.461 518.253
πR 4.671 520.897
πm 4.655 519.574

Arnold and Press (1989b) gave the estimates of α using the conjugate independent priors
and modified Lwin priors as 4.263 and 4.225, respectively. Our noninformaive Bayesian
analysis gives larger values than those of Arnold and Press (1989b).

The marginal posterior probability densities of α and β are depicted in Figure 3.1 and
Figure 3.2, respectively.

In Figure 3.1, we can see that the posterior mode of Jeffreys’ prior is slightly larger than
the the posterior mode under the other priors.

Figure 3.1 Marginal Posterior Distribution of α

Figure 3.2 Marginal Posterior Distribution of β

4. Concluding remarks

We developed the noninformative priors for the Pareto distribution with scale and shape
parameters.

When the parameter of interest is the shape parameter, Jeffreys, reference and probability
matching priors are developed. We showed that the reference prior also satisfies first order
matching criterion. And there does not exist second order matching prior. We showed the
propriety of posterior under proposed noninformative priors. And some simulation for com-
paring frequentist coverage probability showed that reference prior and first order matching
prior matched the target coverage probability. The reference prior is slightly better than
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probability matching prior in terms of coverage probability when the sample size is moder-
ate.

When the parameter of interest is the scale parameter, we developed reference prior and
first order matching prior. This first order matching prior does not satisfy the second order
matching criterion, and the reference prior does not give proper posterior distribution. Some
simulation revealed that the coverage probability of first order matching prior matched the
target coverage probability. But the Jeffreys’ prior did not. We also proved the propriety of
first order matching prior.

And we provided a real data example. We calculated the Bayes estimators, and depicted
marginal posterior distributions.

As a consequence, we recommend the use of reference prior when the parameter of interest
is the shape parameter, and the use of probability matching prior when the parameter of
interest is the scale parameter.
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