Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects

충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성

  • 임함 (국립경상대학교 기계항공공학부) ;
  • 김동현 (국립경상대학교 기계항공공학부 및 항공기부품기술연구소) ;
  • 김유성 (국립경상대학교 기계항공공학부) ;
  • 김요한 (국립경상대학교 기계항공공학부) ;
  • 김석수 (한국항공우주산업(주))
  • Published : 2009.06.30

Abstract

In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

References

  1. Kirshman , D. J., Liu, F., 2006, "Flutter Prediction by and Euler Method on Non-moving Cartesian Grids with Gridless Boundary Conditions," Computers & Fluids, Vol. 35, pp. 571-586. https://doi.org/10.1016/j.compfluid.2005.04.004
  2. Alonso, J. J., Jameson , A., 1994, "Fully Implicit Time-marching Aeroelastic Solutions," AIAA Paper 94-0056.
  3. Chen, X., Zha, G. C., and Hu, Z., 2004, "Numerical Simulation of Flow Induced Vibration Based on Fully Coupled Fluid-Structural Interactions," AIAA-2004-2240.
  4. Bohbot, J., Darracq, D., 2001, "Time Domain Analysis of Two D.O.F. Airfoil FlutterUsing an Euler/Turbulent Navier-Stokes Implicit Solver," International Forum on Aeroelasticity and Structural Dynamics, Madrid, Spain, June 5-7.
  5. Prananta, B. B, H. M. M. L. and Z. R. J., 1998, "Two-Dimensional Transonic Aeroelastic Analysis Using Thin-Layer Navier-Stokes Implicit Solver," Journal of Fluid and Structures, Vol. 12, pp. 655-679. https://doi.org/10.1006/jfls.1998.0167
  6. Bohbot, J., Darracq, D., 2001, "Time Domain Analysis of Two D.O.F. Airfoil FlutterUsing an Euler/Turbulent Navier-Stokes Implicit Solver," International Forum on Aeroelasticity and Structural Dynamics, Madrid, Spain, June 5-7.
  7. Kirshman, D. J., and Liu, F., 2006, "Flutter Prediction by an Euler Method on Non-Moving Cartesian Grids with Gridless Boundary Condition," Computer & Fluids, 35, pp. 571-586. https://doi.org/10.1016/j.compfluid.2005.04.004
  8. 김동현, "구조 비선형성이 있는 2자유도계 에어포일의 천음속 플러터 해석" 한국항공우주학회지, 제26권, 제7호, 1998, pp.85-95.
  9. 김동현, "비정렬 오일러 코드를 이용한 2자유도계에어포일의 유체/구조 연계해석", 한국항공우주학회지, 제29권, 제4호, 2001, pp.8-19.
  10. Kim, D. H., Park, Y. M., Lee I. and Kwon, O. J., 2005, "Nonlinear Aeroelastic Computation of a Wing/Pylon/Finned-Store Using Parallel Computing," AIAA Journal, Vol. 43, No. 1, pp.53-62. https://doi.org/10.2514/1.11011
  11. 오세원, 김동현, 박웅, 2006. "점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석", 한국소음진동공학회지, 제16권, 제9호, pp. 1082-1088.
  12. 김동현, 오세원, 박웅, 2006. "스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석", 한국소음진동공학회지, 제16권, 제10호, pp.1082-1088.
  13. 김동현, 김유성, 김요한, 2008, “유도무기 날개 단면형상에 따른 초음속 및 극초음속 플러터 특성”, 한국소음진동공학회지, 제18권, 제5호, PP.496-502.
  14. 김동현, 김유성, 박웅, 2008, “유동점성 및 공탄성변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가”, 한국항공우주학회지, 제36권, 제1호, pp.72-78.
  15. 김유성, 김동현, 윤명훈, 2007, “받음각 효과를 고려한 발사체 날개단면의 초음속/극초음속 비선형 유체유발진동해석”, 한국군사과학기술학회지, 제10권, 제4호, pp.24-32.