DOI QR코드

DOI QR Code

소성숏이 포함된 3차원 다중충돌 대칭-셀 해석모델을 이용한 면적평균 피닝잔류응력해

Area-Averaged Solution of Peening Residual Stress Using a 3D Multi-impact Symmetry-cell FE Model with Plastic Shots

  • 발행 : 2009.04.01

초록

피닝잔류응력은 통상 XRD 실험법으로 측정되며, 다양한 X-선 조사면적들에서 면적평균해를 준다. 해석연구들 대부분 단일절점 해석해를 소개할 뿐 면적평균해를 전혀 고려하지 않고 있다. 따라서 XRD 실험해와 큰 차를 갖는 것은 자명하다. 이에 본 연구에서는 3차원 다중충돌 대칭-셀 모델을 활용해, 면적평균 피닝잔류응력해를 얻었다. 대칭-셀은 통합인자와 소성숏을 포함하며, 숏피닝 현상 들이 충분히 반영된다. 대칭-셀 A-D 네 충돌위치 에서 4-절점평균해를 얻었으며, 대칭-셀의 각 단면 ($0.4mm{\times}0.4mm$)에 포함된 전체절점에서 면적평균 해를 얻었다. 그리고 해석해들을 XRD 실험해와 비교했다. 소성숏 면적평균해가 4-절점평균해보다 XRD 실험해로의 근접성이 뛰어났다. 또한 양축 등가응력으로의 완벽한 수렴성을 보였다. 이로써 면적평균해에 기초한 유한요소 알멘선도를 구해, 유한요소 아크하이트, 유한요소 피닝커버리지 및 투사속도들간의 관계식들을 유도하였다. 유한요소 알멘선도는 김태형과 이형일이 정리한 실험적 알멘선도의 추이를 따랐으며, 그 유효성이 한층 향상됐다. 유도식들을 활용하여, 주요 피닝소재들 AISI4340, AISI4140, SPS8에서 유한요소 면적평균 해들을 얻고 XRD 실험해들과 비교했다. 피닝소재 모두에서 표면 및 최대압축잔류응력, 변형깊이가 실험해와 잘 일치하여, 피닝부품들의 잔류응력해 예측에 유한요소 알멘선도가 매우 유용함을 확인 했다. 이상과 같이 본 연구의 면적평균해가 실제 XRD 잔류응력 측정해를 매우 잘 따른다는 점에 주목되며, 궁극적으로 실재하는 숏피닝 잔류응력 평가를 위한 체계적인 해석방법임을 확인했다.

키워드

면적평균해;대칭-셀;알멘선도;피닝커버리지;아크하이트;다중충돌

참고문헌

  1. Song, P. S. and Wen, C. C., 1999, 'Crack Closure and Crack Growth Behavior in Shot Peened Fatigued Specimen,' Engineering Fracture Mechanics, Vol. 63, pp. 295-304 https://doi.org/10.1016/S0013-7944(99)00010-7
  2. Menig, R., Pintschovius, L., Schulze, V. and Vöhringer, O., 2001, 'Depth Profiles of Macro Residual Stress in Thin Shot Peened Plates Determined by X-ray and Neutron Diffraction,' Scripta Materialia, Vol. 45, pp. 977-983 https://doi.org/10.1016/S1359-6462(01)01063-6
  3. Al-Hassani, S. T. S., 1981, 'Mechanical Aspects of Residual Stress Development in Shot Peening,' $1^{st}$ International Conference on Shot Peening, pp. 583-602
  4. Hills, D. A., Waterhouse, R. B. and Noble, B., 1983, 'An Analysis of Shot Peening,' Journal of Strain Analysis, Vol. 18, pp. 95-100 https://doi.org/10.1243/03093247V182095
  5. Al-Obaid, Y. F., 1990, 'A Rudimentary Analysis of Improving Fatigue Life of Metals by Shot-peening,' Journal of Applied Mechanics, Vol. 57, pp. 307-312 https://doi.org/10.1115/1.2891990
  6. Schiffner, K. and Helling, C., 1999, 'Simulation of Residual Stresses by Shot Peening, Computers & Structures,' Vol. 72, pp. 329-340 https://doi.org/10.1016/S0045-7949(99)00012-7
  7. Guagliano, M., 2001, 'Relating Almen Intensity to Residual Stresses Induced by Shot Peening: A Numerical Approach,' Journal of Materials Processing Technology, Vol. 110, pp. 227-286 https://doi.org/10.1016/S0924-0136(00)00893-1
  8. Majzoobi, G. H., Azizi, R. and Alavi N., A., 2005, 'A Three-dimensional Simulation of Shot Peening Process using Multiple Shot Impacts,' Journal of Materials Processing Technology, Vol. 164-165, pp. 1226-1234 https://doi.org/10.1016/S0168-874X(98)00057-2
  9. Kim, T. and Lee, H., 2008, 'A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-impacts,' KSME (A), Vol. 32, No. 8, pp. 642-653 https://doi.org/10.3795/KSME-A.2008.32.8.642
  10. Kim, T. and Lee, H., 2008, 'A 2D FE Model for Unique Solution of Peening Residual Stress in Single Shot Impact,' KSME (A), Vol. 32, No. 4, pp. 362-370 https://doi.org/10.3795/KSME-A.2008.32.4.362
  11. Hong, S. H., Lee, D. W., Cho, S. S. and Joo, W. S., 2002, 'A Study on the Failure Mechanism of Turbine Blade Using X-ray Diffraction and FEM,' International Journal of Automotive Technology, Vol. 10, No. 6, pp. 150-157
  12. Prevey, P. S. and Cammett, J. T., 2002, 'The Effect of Shot Peening Coverage on Residual Stress, Cold Work and Fatigue in a Ni-Cr-Mo Low Alloy Steel,' $8^{th}$ International Conference on Shot Peening, pp. 295-304 https://doi.org/10.1002/3527606580.ch37
  13. ABAQUS User's Manual, 2004, Version 6.5, Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI
  14. SAE J442, 2004, Test Strip, Holder and Gage for Shot Peening, Society of Automotive Engineers, Inc
  15. Torres, M. A. S. and Voorwald, H. J. C., 2002, 'An Evaluation of Shot Peening Residual Stress and Stress Relaxation on the Fatigue Life of AISI 4340 Steel,' International Journal of Fatigue, Vol. 24, pp. 877-886 https://doi.org/10.1016/S0142-1123(01)00205-5
  16. SAE J443, 1984, Surface Vehicle Recommended Practice, Society of Automotive Engineers, Inc
  17. MIL-S-113165C, 1989, Shot Peening of Metal Parts, Military Specifications
  18. AMS-S-13165, 1997, Aerospace Material Specifi- cation, Society of Automotive Engineers, Inc
  19. Menig, R., M., Schulze, V. and Vohringer, O., 2002, 'Residual Stress Relaxation and Fatigue Strength of AISI4140 under Torsional Loading after Conventional Shot Peening, Stress Peening and Warm Peening,' $8^{th}$ International Conference on Shot Peening, pp. 311-316 https://doi.org/10.1002/3527606580.ch39
  20. Chung, S. J. and Back, S. D., 1998, 'Effect of Shot Peening on Fatigue Properties in Spring Steel,' KSME (A), Vol. 22, No. 6, pp. 1009-1015
  21. Luan, W., Jiang, C., Ji, V., Chen, Y. and Wang. H., 2008, 'Investigation for Warm Peening of TiB2/Al Composite Using X-ray Diffraction,' Materials Science and Engineering A, Vol. 497, pp. 374-377 https://doi.org/10.1016/j.msea.2008.07.016
  22. Levers, A., Prior, A. and Socie, D., 1989, 'Multi-axial Fatigue: Analysis and Experiments,' Society of Automotive Engineers, Inc., Warrendale, pp. 16-17
  23. Meguid, S. A., Shagal, G. and Stranart, J. C., 2002, '3D FE Analysis of Peening of Strain-Rate Sensitive Materials using Multiple Impingement Model,' International Journal of Impact Engineering, Vol. 27, pp. 119-134 https://doi.org/10.1016/S0734-743X(01)00043-4
  24. Boo, M. H., Oh, S. W., Park, Y. C. and Hirose, Y., 1994, 'Studies on Elastic Deformation by X-ray Stress Measurement of WC-Co Alloy,' The Study of Ocean and Technology, Vol. 8, No. 2, pp. 105-114
  25. Kirk, D. and Hollyoak, R. C., 2005, 'Relationship between Coverage and Surface Residual Stress,' $9^{th}$ International Conference on Shot Peening, pp. 373-378
  26. AMS 2430L, 1993, Aerospace Material Specifi-cation, Society of Automotive Engineers, Inc
  27. Jacobsen, B., Lienert, U., Almer, J., Poulsen, H. F. and Pantleon, W., 2008, 'Direct Observation of Strain in Bulk Subgrains and Dislocation Walls by High Angular Resolution Three-dimensional X-ray Diff- raction,' Materials Science and Engineering A, Vol. 483-484, pp. 641-643 https://doi.org/10.1016/j.msea.2006.12.168