유도 결합 플라즈마를 이용한 TaN 박막의 건식 식각 특성 연구

DOI QR코드

DOI QR Code

엄두승;김승한;우종창;김창일
Um, Doo-Seung;Kim, Seung-Han;Woo, Jong-Chang;Kim, Chang-Il

  • 발행 : 2009.12.31

초록

In this study, the plasma etching of the TaN thin film with $O_2/BCl_3$/Ar gas chemistries was investigated. The equipment for the etching was an inductively coupled plasma (ICP) system. The etch rate of the TaN thin film and the selectivity of TaN to $SiO_2$ and PR was studied as a function of the process parameters, including the amount of $O_2$ added, an RF power, a DC-bias voltage and the process pressure. When the gas mixing ratio was $O_2$(3 sccm)/$BCl_3$(6 sccm)/Ar(14 sccm), with the other conditions fixed, the highest etch rate was obtained. As the RF power and the dc-bias voltage were increased, the etch rate of the TaN thin film was increased. X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical states of the surface of the TaN thin film.

키워드

Etch;TaN;Plasma;ICP;$BCl_3$/Ar;$O_2$

참고문헌

  1. B. H. Lee, R. Choi, L Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. J. Qi, C. Kang, J. C. Lee, 'Characteristics of TaN Gate MOSFET with Ultrathin Hafnium Oxide (8A-12A)', International Electron Devices Meeting, (2000) 39
  2. S. K. Yang, H. H. Kim, B. H. O, S. G. Lee, E. H. Lee, S. G. Park, S. P. Chang, J. G. Lee, H. Y. Song, J. Korean Phys. Soc., 51 (2007) S198 https://doi.org/10.3938/jkps.51.198
  3. C. K. Hu, L. Gignac, S. G. Malhotra, R. Rosenberg, S. Boettcher, Appl. Phys. Lett., 78 (2001) 904 https://doi.org/10.1063/1.1347400
  4. M. L. Green, M. Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. I. Raisanen, D. Muller, M. Bude, J. Grazul, J. Appl. Phys., 92 (2002) 7168 https://doi.org/10.1063/1.1522811
  5. W. S. Hwang, J. Chen, W. J. Yoo, V. Bliznetsov, J. Vac. Sci. Technol. A, 23(4) (2005) 964 https://doi.org/10.1116/1.1927536
  6. F. A. Khan, L. Zhou, V. Kumar, I. Adesida, R. Okojie, Mat. Sci. Eng. B, 95 (2002) 51 https://doi.org/10.1016/S0921-5107(02)00160-5
  7. S. M. Koo, D. P. Kim, K. T. Kim, and C. I. Kim, Mat. Sci. Eng. B, 118 (2005) 201 https://doi.org/10.1016/j.mseb.2004.12.029
  8. C. S. Kang, H. J. Cho, Y. H. Kim, R. Choi, K. Onishi, A. Shahriar, J. C. Lee, J. Vac. Sci. Technol. B, 21(5) (2003) 2026 https://doi.org/10.1116/1.1603285
  9. P. Lamour, P. Fioux, A. Ponche, M. Nardin, M. F. Vallat, P. Dugay, J. P. Brun, N. Moreaud, J. M. Pinvidic, Surf. Interface Anal., 40 (2008) 1430 https://doi.org/10.1002/sia.2919
  10. K. H. Min, K. C. Chun, K. B. Kim, J. Vac. Sci. Technol. B, 14(5) (1996) 3263 https://doi.org/10.1116/1.588818
  11. A. Arranz, C. Palacio, Surf. Interface Anal., 29 (2000) 653 https://doi.org/10.1002/1096-9918(200010)29:10<653::AID-SIA913>3.0.CO;2-T
  12. K. Nakamura, T. Kitagawa, K. Osari, K. Takahashi, K. Ono, Vacuum, 80 (2006) 761 https://doi.org/10.1016/j.vacuum.2005.11.017
  13. M. H. Shin, M. S. Park, N. E. Lee, J. Kim, C. Y. Kim, J. Ahn, J. Vac. Sci. Technol. A, 24(4) (2006) 1373 https://doi.org/10.1116/1.2210944
  14. J. S. Park, M. J. Lee, C. S. Lee, S. W. Kang, Electrochem. Solid State Lett., 4 (2001) C17 https://doi.org/10.1149/1.1353160
  15. F. A. Khan and I. Adesida, Appl. Phys. Lett., 75 (1999) 2268 https://doi.org/10.1063/1.124986
  16. M. H. Shin, S. W. Na, N. E. Lee, J. H. Ahn, Thin Solid Films, 506-507 (2006) 230 https://doi.org/10.1016/j.tsf.2005.08.019