Crack Growth and Wear Properties of Silica-reinforced Styrene-butadiene Rubber Compounds: Effect of Processing Oil Type

실리카충전 스티렌-부타디엔 고무컴파운드의 균열성장 및 마모특성: 공정오일 종류의 영향

  • Kang, S.L. (Department of Polymer-Nano Science and Technology, BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Lee, J.Y. (Department of Polymer-Nano Science and Technology, BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Go, J.Y. (Kumho Petrochemical R&D center) ;
  • Go, Y.H. (Kumho Petrochemical R&D center) ;
  • Kaang, S. (School of Applied Chemical Engineering, Chonnam National University) ;
  • Nah, C. (Department of Polymer-Nano Science and Technology, BK-21 Polymer BIN Fusion Research Team, Chonbuk National University)
  • 강성락 (전북대학교 고분자나노공학과) ;
  • 이종영 (전북대학교 고분자나노공학과) ;
  • 고재영 (금호석유화학 중앙연구소) ;
  • 고영훈 (금호석유화학 중앙연구소) ;
  • 강신영 (전남대학교 응용화학공학부) ;
  • 나창운 (전북대학교 고분자나노공학과)
  • Published : 2009.12.31

Abstract

Commercial grades of solution styrene-butadiene rubbers extended with high aromatic oils having high polycyclic aromatic compounds (PCA) and low PCA oils were used to study the effect of the processing oil particularly on the crack propagation resistance and frictional wear resistance of the vulcanizates. The aromatic oil based vulcanizates exhibited superior fracture behavior over the low PCA oil extended vulcanizates based on tensile and trouser tear tests. Compounds with aromatic oil showed superior crack propagation resistance compared with those containing low PCA oil, especially at the lower ranges of tearing energy. In terms of frictional wear resistance, the aromatic oil extended compounds showed superior performance particularly in the lower frictional work ($W_f$) range but in the higher $W_f$ range the low PCA oil extended vulcanizates performed better.

References

  1. Rhone Poulenc (J. C. Morawski), European Patent EP 0157703 (1985)
  2. Ets Michelin, European Patent EP 0501 227 A1 (1992)
  3. S. Wolff, U. Gorl, M. J. Wang, and W. Wolff, 'Silica-based tread compounds', Eur. Rubber J., 176, 16 (1994)
  4. S. Wolff and E. H. Tan, Am. Chem. Soc.: Rubber Division (Paper #66), New York, April 8-11 (1986)
  5. Joona M, 'Non-carcinogenic tire extender oils providing good dynamic performance', Rubber World, 235, 15 (2007)
  6. S. Dasgupta, S. L. Agrawal, S. Bandyopadhyay, S. Chakraborty, R. Mukhopadhyay, R. K. Malkani, S. C. Ameta, 'Characterization of eco-friendly processing aids for rubber compound', Polym. Test., 26, 489 (2007) https://doi.org/10.1016/j.polymertesting.2007.01.007
  7. S. Dasgupta, S. L. Agrawal, S. Bandyopadhyay, S. Chakraborty, R. Mukhopadhyay, R. K. Malkani, S. C. Ameta, 'Characteri zation of eco-friendly processing aids for rubber compound: Part II', Polym. Test., 27, 277(2008) https://doi.org/10.1016/j.polymertesting.2007.11.004
  8. A. Luch, 'The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons', Imperial College Press, London, 2005 (Chapter 1)
  9. V. Null, 'Rubber tests with safer extender oils', Tire Technol. Int., 21 (1999)
  10. A. N. Gent, 'Engineering with rubber: how to design rubber components', Hanser, Munich,: Hanser, 2001 (Chapter 6)
  11. Rivlin RS, Thomas AG, J Polymer Science 1953;10:291-318 https://doi.org/10.1002/pol.1953.120100303
  12. S. Kaang and C. Nah, 'Fatigue crack growth property of double- networked natural rubber', Polymer, 39, 2209 (1998) https://doi.org/10.1016/S0032-3861(97)00347-9
  13. A. N. Gent and C. Nah, 'Abrasion of rubber by a blade abrader: effect of blade sharpness and test temperature for selected compounds', Rubber Chem. Technol., 69, 819 (1996) https://doi.org/10.5254/1.3538405
  14. C. Nah, J. Cho, and S. Kaang, 'An improved test method of abrasion of rubber in blade abrader', Polym. Test., 17, 11 (1998) https://doi.org/10.1016/S0142-9418(97)00025-1
  15. J. E. Pocklington, 'A safer alternative to aromatic process oils', Tire Technol. Int., 43 (1998)
  16. Mobil Europe Lubricants Ltd, 'Oils without labels', Tire Technol. Int., 10 (1999)
  17. E. Southern and A. G. Thomas, 'Study of rubber abrasion', Plast. Rubber: Mat. Appl., November (1978)
  18. D. H. Champ, E. Southern, and A. G. Thomas, 'Fracture mechanics applied to rubber abrasion', American Chemical Society, Division of Organic Coatings and Plastics Chemistry, 34, April (1974)
  19. A. Schallamach, 'Abrasion of rubber by a needle', J. Polym. Sci., 9, 385 (1952) https://doi.org/10.1002/pol.1952.120090501