DOI QR코드

DOI QR Code

Effect of Anode Voltage on Diamond-like Carbon Thin Film Using Linear Ion Source

Linear Ion Source를 이용한 Anode Voltage 변화에 따른 DLC 박막특성

Kim, Wang-Ryeol;Jung, Uoo-Chang;Jo, Hyung-Ho;Park, Min-Suk;Chung, Won-Sub
김왕렬;정우창;조형호;박민석;정원섭

  • Published : 2009.08.31

Abstract

Diamond-like carbon(DLC) films were deposited by linear ion source(LIS)-physical vapor deposition method changing the anode voltages from 800 V to 1800 V, and characteristics of the films were investigated using residual stress tester, nano-indentation, micro raman spectroscopy, scratch tester and Field Emission Scanning Electron Microscope(FE-SEM). The results showed that the residual stress and hardness increased with increasing the ion energy up to anode voltage of 1400 V. It was also found that the content of $SP^3$ carbon increased with increasing the anode voltage $SP^3/SP^2$ ratio through investigation of $SP^3/SP^2$ ratio by the micro-raman analysis. From these results, it can be concluded that the physical properties of DLC films such as residual stress and hardness are increased with increasing the anode voltage. These results can be explained that 3-dimensional cross-links between carbon atoms and Dangling bond are enhanced and the internal compressive stress also increased with increasing the anode voltage. The optimal anode voltage is considered to be around 1400 V in these experimental conditions.

Keywords

DLC;Linear ion source;PVD;Anode voltage;Hardness

References

  1. J. Robertson, Mater. Sci. Eng., R 37 (2002) 129
  2. J. Robertson, Surface and Coating Technology, 50 (1992) 185 https://doi.org/10.1016/0257-8972(92)90001-Q
  3. K.-R. Lee, K. Y. Eun, I. Y. Kim, J. R. Kim, Thin Solid Films, 377-378 (2000) 261 https://doi.org/10.1016/S0040-6090(00)01429-2
  4. H. Tsai, D. B. Bogy, J. Vac. Sci. Technol., A5 (1987) 3287
  5. D. Nir, Thin Solid Films, 112 (1984) 41 https://doi.org/10.1016/0040-6090(84)90500-5
  6. J. W. Zou, K. Schmidt, K. Reichelt, B. Dischler, J. Appl. Phys., 67 (1990) 487 https://doi.org/10.1063/1.345230
  7. D. Sheeja, B. K. Tay, S. M. Krishnan, L. N. Nung, Diamond & Related Materials, 12 (2003) 1389 https://doi.org/10.1016/S0925-9635(03)00165-1
  8. Y. H. Son, W. C. Jung, J. I. Jeong, N. G. Park, I. S. Kim, K. H. Kim, I. H. Bae, J. Kor. Vac. Soc., 9 (2000) 328
  9. J. Robertson, Diamond & Related Materials, 2 (1993) 984 https://doi.org/10.1016/0925-9635(93)90262-Z
  10. J. C. Angus, P. Koidl, S. Domitz, Plasma Deposited Thin Films, CRC Press, Boca Raton, FL (1986) 89
  11. J. Veverkova, S. V. Hainsworth Wear, 264 (2008) 518 https://doi.org/10.1016/j.wear.2007.04.003
  12. R. K. Singh, Z. H. Xie, A. Bendavid, P. J. Martin, P. Munroe, M. Hoffman, Diamond & Related Materials, 17 (2008) 975 https://doi.org/10.1016/j.diamond.2008.02.037
  13. K.-R. Lee, K. Y. Eun, Bull. of the Korean Inst. of Met. & Mater., 6(4) (1993) 345
  14. C. K. Lee, Diamond & Related Materials, 17 (2008) 306 https://doi.org/10.1016/j.diamond.2007.12.047
  15. C. S. Lee, J.-K. Shin, J. K. Kim, K.-R. Lee, K.-H. Yoon, J. Kor. Vac. Soc., 11 (2002) 8
  16. D. Sheeja, B. K. Tay, K. W. Leong, C. H. Lee, Diamond & Related Materials, 11 (2002) 1643 https://doi.org/10.1016/S0925-9635(02)00109-7
  17. M. David, R. Padiyath, S. V. Badu AIChE J., 37 (1991) 367 https://doi.org/10.1002/aic.690370307
  18. K. Enke, Thin Solid Films, 80 (1981) 227 https://doi.org/10.1016/0040-6090(81)90226-1