유비쿼터스 기술 기반의 지능형 교통시설물관리서비스를 위한 비즈니스 모델

유성열*

Business Model for Intelligent Traffic Facility Management Service Based on Ubiquitous Technology

Sungyeol Yu*

요 약

본 논문에서는 유비쿼터스 기술 기반의 지능형교통시설물 관리 서비스를 위한 비즈니스 모델과 이의 구현을 위한 시스템 구성방안 및 기술 요소들에 대하여 제안한다. 먼저 비즈니스 모델에서는 지능형교통시설물 관리의 서비스 기능과 구성, 그리고 비즈니스 프로세스 및 이해관계자들 간의 수요/공급 관계를 제시한다. 이와 함께, 비즈니스 모델 구현을 위한 시스템 구성방안을 제안한다. 시스템 구성에 대해 필요한 네트워크, 인프라, 플랫폼의 관점에서 기술요소들을 살펴보고, 주요 기술들에 대한 비교 분석을 통해 교통시설물관리에 적합한 기술 구성방안을 함께 제시한다. 결론적으로, 본 연구를 통해 제안된 비즈니스 모델 및 기술 구현 방안은 지능형교통시설물 관리를 위한 가이드라인을 제시한다.

Abstract

In this paper, we propose the system structure and technologies to implement a business model for an intelligent traffic facility management system based on ubiquitous technology. The business model includes the service functions, service structure, business process, and demand and supply relationship among the participants in this model. We also propose an approach to implementing the model. This includes the network, infrastructure and platform to be used for system composition. We then present the results from an analysis by comparison of different technologies and an adequate technology structure. Finally, this paper may present guidelines to managing traffic facilities.

Keyword : 유비쿼터스(ubiquitous), 지능형 시스템(intelligent system), 교통시설물(traffic facility), 비즈니스 모델(business model)
I. 서론

최근 들어 다양한 분야에서 유플러스 기술을 활용한 유플러스 도시에 대한 연구가 활발히 진행되고 있다. 특히 신도시 혹은 기존도시의 지능적인 도시 관리에 대한 유플러스 시설 추진이 급증하고 있다[1-3]. 유플러스 도시라든가, 산업, 문화, 행정, 환경 등에 대한 도시 기능을 효율적이고 체계적으로 구현하기 위해, 도시 기획의 초기 단계부터 IT 기술과 정보통신 인프라를 반영함으로써, 정보화에 따른 도시 생활의 편리성을 도모하고 살아갈 풍경, 체계적인 도시 관리에 의한 안전과 주민복지 향상 등 도시 기능을 획기적으로 향상시킬 수 있는 도시로 정의된다[4]. 공극적으로 유플러스 도시에서는 유플러스 컴퓨팅과 정보통신 기술을 기반으로 도시 전반의 영역을 융합하여, 통합하고, 자동적이며, 스스로 혁신되는 도시 건설을 그 목표로 하고 있다. 유플러스 도시의 서비스는 교통, 방재, 의료, 주거, 환경, 교육, 도시 시설등 도시 전반에 걸쳐서 다양하게 적용된다. 이러한 서비스가 성공을 거두기 위해서는 도시의 시민들을 포함한 서비스 수요자가 필요로 하는 기능과 프로세스가 무엇인지에 대한 비즈니스 모델의 정확한 정의가 필요하며, 또한 이의 구현을 위해 필요한 기술들을 명확히 정의하고 적용하는 것이 중요하다[5]. 최근에는 유플러스 도시의 비즈니스 모델 구현을 위한 기존의 요소들 중 센터 네트워크 기술이 많이 적용되고 활동하고 있다[5,6]. 특히, 도시 시설물관리 분야에서 센서 기반의 시설물관리를 위한 정보서비스 모델이 개발되고 구현되어 오고 있다[4,7-9]. 하지만 시설물 관리에 대한 기존 연구들은 지하경제물에 대한 RFID 기술적용방안[7], 공동구 시설물 관리와 기업 시스템 모델제안[8], 도시기반 시설물 기술 동향[9] 등, 주로 특정 시설물에 대한 기술적 관점에서의 관리 방식을 주로 이루고 있다. 이에 본 연구에서는 도시시설물 중 교통設施을 중심으로 교통시설관리 서비스를 위한 비즈니스 모델과 이의 구현을 위한 기술요소들을 제안함을 목적으로 한다. 본 연구에서는 도시 내 교통시설물관리를 위한 통합운영센터의 개념을 도입하여 관리함을 전제로, 통합운영센터의 관리와 통합시설물관리 서비스 비즈니스 모델과 이의 구현을 위한 기술요소들을 다양한 관점에서 제시한다.

본 논문은 다음과 같게 구성되어 있다. 먼저 II장에서는, 터널, 교량 등 교통시설물 관리에 유플러스 기술이 어떻게 구현되었는지에 대한 구현 사례를 살펴본다. III장에서는 교통시설물 관리에 관한 서비스 기능과 프로세스, 그리고 참여자의 역할 관계를 나타내는 비즈니스 모델을 정리하여 제시한다. 그리고 이의 구현을 위한 시스템 구성 방안과 필요 기술들의 비교 분석 결과를 IV장에서 제시한다. V장에서는 제안 모델의 특징 및 기존 연구와의 차별성에 대해 제시하며, 마지막으로 VI장에서는 본 연구에서 제안한 모델이 유플러스 도시 구현에 어떻게 기여할 수 있는지와 함께 향후 연구 방향에 대해 제시한다.

II. 국내외 동향

교통시설물들은 일반도로 뿐만 아니라 터널, 교량, 지하철 종 특수한 형태의 도로에도 존재한다. 특히, 교량, 터널, 지하철도 등의 특수 도로는 그 자체가 중요한 하나의 교통 시설물로서, 이러한 시설물에 문제가 발생할 경우에는 일반 도로 시설물 장애에 비해 시민들의 안전에 미친 영향을 크게 끼치게 된다. 따라서 이러한 특수 교통도로는 시설물 자체 관리가 시민의 안전에 직접적으로, 안전관리의 관절에서 시설물 관리에 접근하게 된다. 이 장에서는 교통시설물 관리 서비스와 관련된 최근의 국내외 사례를 살펴본다.

터널시설물에 대한 관리 서비스를 제공한 예로는 부산시에서 유플러스 도시 구축 사업의 일환으로 추진 중인 만덕터널의 예를 들 수 있다. 터널의 경우, 일반 도로에서의 시설물에 대한 관리와는 달리 특수적으로 좁아지는 CO 농도에 대한 감시, 스위치, 센터 등과 다양한 위험요소에 대한 관리가 요구된다. 이에 안전관리 모니터링, 상황알림 및 제어시스템 구축, 연구 및 개발, 조도, CO 농도, 폐기물, 터널 내부 단면변화, 노면상태, 센터, 지연 등을 관리관리를 위한 기초데이터 수집 센서 설치 및 통합관리시스템을 구축하여 실시간으로 터널 상황 정보를 모니터링하고 터널 상황에 대한 실시간 안내서비스를 제공하는 시스템 구축이 필요하다. 그림 1은 이와 관련 관리에서 구현된 만덕터널의 시설물 관리체계를 나타낸 개념도이다[10].

교통과 터널과 마찬가지로 그 자체로 하나의 중요한 교통시설물이다. 교통의 경우에는 통행이나 교통의 혼잡으로 인해 차량들의 통행에 직접적인 안전상의 문제를 야기할 수 있다. 따라서 교량에 대한 관리는 일반 교통시설들과 차별화되는 특수, 진동 등의 관점에서의 관리가 요구된다. 부산 구포대교의 경우, 이러한 개념을 적용하여 교량관리가 이루어지고 있다. 그림 2는 구포대교의 교량안전관리 서비스 개념도이다[11,12].
유비쿼터스 기술 기반의 지능형 교통시설물관리서비스를 위한 비즈니스 모델

그림 1. 탑널관리서비스 사례

Fig. 1. An Example of Tunnel Control Service

그림 2. 다리관리서비스 사례

Fig. 2. An Example of Bridge Control Service

유비쿼터스 기술을 활용한 교통시설물관리서비스는 가로등, 신호등 등 교통시설물의 관리를 자동화하고, 이들 시설물에 대한 관리 업무 수행을 위해 자동화가 가능하며, 난비, 음도에 따르는 LED 불빛이 점등되며 현장의 난비 상태를 관리자에게 실시간으로 표시하며, 위치에서 가로등의 설치 정보, 현장 상태, 관리 내역을 조사하고, 타이머를 설정하거나 실시간으로 온/오프 하도록 지원하고 있다.

시각에 자동으로 점등/소등되도록 하는 점 전력 여건 조정 제어가 가능하며, 난비, 음도에 따르는 LED 불빛이 점등되어 현장의 난비 상태를 관리자에게 실시간으로 표시하며, 위치에서 가로등의 설치 정보, 현장 상태, 관리 내역을 조사하고, 타이머를 설정하거나 실시간으로 온/오프 하도록 지원하고 있다.

그림 3. 지능형 가로등 시스템 구축 사례

Fig. 3. An Example of Intelligent Street Light System

보다 광범위한 형태의 에로는, 국토해양부에서 2006년부터 오는 2011년까지 총 253억 원의 예산을 투입하여 약 5개 년에 걸쳐 한국시설안전공단과 함께 교량, 타널 등 교통관련 국가 기간시설물의 안전관리를 위해 지능형센터 기술을 활용한 시스템 양안관리시스템의 개발을 돕고 있다. 이 사업에서는 지능형센터 기술을 활용하여 시설물의 전체적인 운작성과 시설물의 상황을 즉시 분석하고 사고를 미연에 방지하고 발생할 우려는 시스템을 구축하고 있으며, 구축 후 시설물 안전관리 효과가 더욱 커질 것으로 기대하고 있다. 2008년을 시점으로 삼아 교육, 교육도드범위감각 교육법화, 교육설비 설비설비, 교육설비 설비설비 4개소에 시범설치가 완료 되었으며, 구축 시설물 정량방향 1개소에 영동고속도평장 인근 걸다시 1개소, 도로시설 1개소, 관통시설물 1개소를 합쳐 총 8개소에 사업이 진행 중이다.

해외에서도 유비쿼터스 도시 구현을 위한 다양한 분야의 연구가 진행되고 있다. 대규모로 유비쿼터스 도시 사업을 추진 중인 국가로는 영국, 일본, 싱가포르 등이 있으며, 그리스, 잉글랜드, 아일랜드 등은 종사규모로 사업을 추진 중이다. 그러 나 교통시설물관리 분야와 직접적인 관련이 있는 연구보고서나 논문은 거의 없는 실정이다. 교통 분야와 관련된 유비쿼터스 기술을 활용한 교통시설물관리서비스의 구축을 위한 연구개발은 지속적으로 진행되고 있으며, 지속적인 연구개발과 교육을 통해 유비쿼터스 기술의 활용을 보다 활발히 추진할 수 있도록 노력해야 한다.
국의 사례로 타이베이시에서 추진 중인 "Taipei Cyber City & M-Taipei Project"을 들 수 있는데, 이 프로젝트는 도시 전체의 무선 네트워크 인프라 구축 및 서비스 제공을 목표로 하고 있다(14). 이 프로젝트에서 제공되는 서비스는 교통정보와 문화 관광 정보 등에 한정된 서비스 제공을 목표로 하고 있는 정도이다. 다만 인프라 구축을 위해 교통시설에 무선 장비 (AP)를 설치할 수 있도록 정책에서 규제를 완화하고 있다.

이상의 기존 국내의 사례들을 살펴보면, 대부분 터널이나 교량 등 단일 시설물에 대한 안전관리 중심의 시설물 관리가 주를 이루고 있는 반면, 해외의 경우에는 아직까지 관련 연구가 미흡한 실정이다. 본 연구는 기존의 시설물 제시사항 보다, 도시 내의 모든 유형의 교통 시설물에 대한 통합관리를 위한 비즈니스 모델을 제시함으로 한다. 제시되는 비즈니스 모델에서 시설물 관리 서비스는 어떻게 제공되는지에 대한 프로세스와 제공되는 서비스 기능을 제시하고, 비즈니스 모델에 참여하는 공공기관 및 시민, 서비스 제공자의 관계에 대해서도 함께 제시함으로써 향후 교통시설관리 서비스의 발현성에 대해 제시하도록 한다. 그리고 비즈니스 모델 구현을 위해 필요한 기술 요소들을 다양한 관점에서 비교, 분석하여 유용한 기술적 방법을 제시하도록 한다.

III. 비즈니스 모델

3.1 교통시설관리 서비스

본 연구에서는 교통시설관리서비스를 일반도, 터널, 교량, 지하차로 등에 설치된 가로등, 신호등, LED 교통안내 표지판 등의 각종 교통시설 관리를 자동화하고, 이를 시설물에 대한 신속한 장애대응을 통해 시설물 관리 기관의 업무 편의성 제고와 함께 시민들의 안전을 제공하기 위한 서비스로 정의한다. 이 서비스의 주요 기능은 시설물관리모니터링, 장애상황자동통보, 원격제어, 현장관리지원, 대인정보제공의 다섯 가지 애플리케이션 영역으로 이루어진다. 또한 이 서비스의 실현을 위해서는 각 교통시설을 별도에 수집된 정보를 종합할 수 있는 기술적 기반을 갖추는 것이 필요하며, 이 정보를 활용할 수 있는 기술적인 부분들의 구현이 필요하다.

3.1.1 서비스 기능

본 연구에서는 지능형 교통시설관리를 위해 제공되는 서비스를 크게 시설물관리모니터링, 장애상황자동통보, 원격 제어, 현장관리지원, 대인정보제공의 다섯 가지로 제안한다. 시설물관리모니터링의 주요 기능은 시설물에 대한 정보 수집, 수집된 정보의 전송, 시설물 상태 확인 등이다. 장애상황자동통보는 시설물이 장애상태에서 벗어났을 때 자동으로 전달하는 장애무하였당과 장애상황을 직면자가 전달해주는 장애통보 기능이 다. 또한 관리자 교통시설을 원격에서 관리하는 시설을 원격제어 기능이 있으며, 현장작업자의 지원을 위한 시설물 원격정보 제공 및 현장 정보수집 기능을 제안한다. 마지막으로 장애나 사고발생시 시민들에게 신속하게 정보를 제공하는 시설물 정보제공 기능을 포함시켰다. 이상의 지능형 교통시설관리 서비스의 주요 기능에 대한 정의가 표 1에 정리되어 있다.

3.1.2 서비스 개념

다섯 가지 유형의 서비스들은 통합운영센터를 통해서 제공된다. 통합운영센터에서 이러한 기능들을 제공하기 위해서는 교통시설에 대한 위치 및 상태, 환경 정보를 실시간으로 수집할 수 있어야 하는데 이는 교통안내표지판, 신호등, 일반도 및 교량과 터널, 지하차로 등에 설치된 센서와 RFID 태그를 통해서 수집한다. 수집된 정보는 현장 관리자의 휴대용 단말기 혹은 지터 피복 도로를 통해 통합운영센터의 서버로 전송된다. 필요시 현장 작업자는 시설물 상태에 대한 정보 및 GIS 위치정보를 휴대 단말기를 통해서 받아온다. 무선 네트워크 및 센서 네트워크 이외에도 본체나 기반의 전력선을 이용한 유전소통망을 사용할 수 있다(시설물에 대한 정보제공 및 모니터링을 사용하는 유무선 네트워크 혹은 센서네트워크에 앞서 기술한 전력통신망이나 지터 피복 단말기와 보조통신 및 시설물의 주요 기능, 그리고 이 정보를 활용할 수 있는 기술적 기반의 구현이 필요하다.)
표 1. 교통시설물관리 서비스 기능

Table 1. Functions of Traffic Facility Management Service

<table>
<thead>
<tr>
<th>구분</th>
<th>주요 기능</th>
<th>기능정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>시설물 관리</td>
<td>정보 수집</td>
<td>시설물에 부착된 센서로부터 실시간으로 시설물 상태에 대한 정보 수집</td>
</tr>
<tr>
<td></td>
<td>정보 전송</td>
<td>시설물에 대한 상태 정보를 운영센터로 전송</td>
</tr>
<tr>
<td></td>
<td>상태 확인</td>
<td>수집된 상태정보가 일관된 상태 정보를 비교하여 이상 시설물 반응에 대한 실시간 모니터링</td>
</tr>
<tr>
<td>장애 발생</td>
<td>정보 유무 관련</td>
<td>시설물의 상태방향성 정보상태를 빠르게 검출하여 즉각 판단</td>
</tr>
<tr>
<td></td>
<td>상황 통보</td>
<td>피해가 입은 장애 상황에 대한 직장자들의 즉시 알림으로 통보</td>
</tr>
<tr>
<td>소속 관리</td>
<td>시설물 위치 정보 제공</td>
<td>현장 위치 정보가 정확하게 검출된 후에 신속하게 위치 정보 제공</td>
</tr>
<tr>
<td></td>
<td>현장 정보 수집</td>
<td>시설물 가까운 위치의 정보를 수집하여 신속하게 정보 제공</td>
</tr>
<tr>
<td></td>
<td>시설물 정보 제공</td>
<td>시설물 정보가 정확하게 검출된 후에 신속하게 정보 제공</td>
</tr>
</tbody>
</table>

3.2 비즈니스 프로세스

교통시설물관리 서비스를 위한 비즈니스 프로세스는 크게 시설물 모니터링, 장애통보 및 원격지원, 그리고 시설물 정보 제공으로 구성된다.

시설물 모니터링은 신호등, 가로등, 분리합 등 각종 교통 시설물에 설치된 센서로부터 시설물에 대한 정보를 수집하고 이를 운영센터의 통합관리센터에 전송하여 시설물의 상태 변화를 실시간으로 파악할 수 있도록 해준다. 이에, 작업자에 대한 현장 위치 정보 제공을 위해 연계기관들로부터 GIS 정보를 받아 함에 관한다. 장애 혹은 시설물에 대한 제어 값의 변화가 요구되는 상황이 발생할 경우에는, 실시간 위치로 시설물을 정의하거나 현장관리자에게 장애 상황을 통보하고 즉시 출동하여 조치할 수 있도록 한다. 이에 현장관리자에게는 화재단말기를 통해 상황처리 현장 관리가 필요한 시설물에 대한 위치정보를 제공한다. 또한 필요시에는 관리기관 및 시민들에게 교통시설물 및 도로 상황에 관한 정보를 제공한다. 이와의 교통시설물관리 서비스를 위한 비즈니스 프로세스가 5에 나타나 있다.

3.3 이해관계자 및 수요/공급 관계

그림 5에 나타난 바와 같이, 교통시설물관리의 비즈니스 프로세스에는 통합운영센터, 시설물 현장관리자, 관련 연계기관, 시민들이 포함된다. 프로세스에는 나타나 있지 않지만, 시스템 구축을 위한 IT 서비스 제공자, 시스템관리사로 정보 전송을 위한 모듈 제공제주는 통신사업자등이 이해관계자로 서비스에 참여한다.

교통시설물관리서비스가 구현되면, 관련 참여자들 사이에 다양한 수요/공급 환경이 발생한다. 예를 들어, 통합운영센터는 시설물의 원격제어를 위해서 유무선 망을 사용하여야 하며, 통신사업자가 운영센터에 통신망을 공급해 주게 된다. 뿐만 아니라 다양한 형태의 수요/공급 망이 구성되고 이에 대
한 비용의 흐름이 발생할 수 있는데, 그림 6은 이러한 참여자들의 수요/공급 관계를 도식화적으로 나타낸 것이다. 그리고 표 2는 이러한 수요/공급 하에서 이해관계자들 간에 발생할 수 있는 수익모델을 정리한 것이다.

표 2. 이해관계자들 간의 수익 원천
Table 2. Revenue Sources of Participants

<table>
<thead>
<tr>
<th>이해관계자</th>
<th>제공 서비스</th>
<th>대상</th>
<th>수익원천</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 서비스 제공자</td>
<td>시스템 구축</td>
<td>통합 운영센터</td>
<td>시스템 구축 비용</td>
</tr>
<tr>
<td>통신사</td>
<td>시스템 유지보수</td>
<td>교통</td>
<td>유지보수 비용</td>
</tr>
<tr>
<td>통신사</td>
<td>유/무선망 제공</td>
<td>공급</td>
<td>외부용료</td>
</tr>
<tr>
<td>현장유지보수</td>
<td>현장 시설물에 대한 유지보수</td>
<td>공급</td>
<td>유지보수 비용</td>
</tr>
<tr>
<td>교통시설물 공급업체</td>
<td>시설물 공급</td>
<td>관련 기관</td>
<td>시설비용</td>
</tr>
<tr>
<td>통합 운영센터</td>
<td>위치운영</td>
<td>위치운영비</td>
<td></td>
</tr>
</tbody>
</table>

4.1 물리적 시스템 구성

전체시스템은 통합운영센터에 설치되는 서버, 교통시설물에서 시설물의 정보수집에 필요한 셀시어 등의 요소를, 그리고 이들 간의 정보교환을 위한 통신망 기술과 현장 작업자와 시설물간의 정보교환 장치 등으로 이루여진다. 먼저, 통합운영센터의 경우에는 관리자가 시설물들을 직접 보면서 관리할 수 있는 시설이 관계모니터, 각종 시설물 정보를 관리기관 및 시민들에게 알려주는 역할을 하는 웹서버, 시설물 위치정보를 관리하는 GIS서버가 있다. 그리고 시설물 제어 및 관리 서버, 교통이나 태어 등 특수 도로 시설의 정보를 관리할 수 있는 교통관리서버나 태어관리서버도 통합운영센터의 시스템을 구성하는 요소들이다.

교통시설물은 시설물에 대한 정보 수집 및 제어를 위한 각종 센서들이 설치된다. 교통의 경우, 온/습도, 환경적, 노면 상태, 변경 등의 정보 수집을 위한 센서가 설치되며, 태어의 경우, 온/습도, 조도, 화재, 등재, 지진, 낙석, CO, 소화기 등의 정보 수집을 위한 센서가 설치된다. 이 밖에 가로등, 제어기, 신호등, 분전함, LED 전광판에도 모니터링, 제어, 관리기관 장치가 설치된다.

교통시설물의 센서와 통합운영센터간의 정보수송을 위한 기술은 통신기술이다. 여기에는 유선망, 무선 센서망 기술인 지각기 통신망, 휴대전화망 등 다양한 형태의 유무선 통신기술이 사용된다.

Ⅳ. 모델 구현을 위한 기술 요소

이 장에서는 III장에서 기술한 교통시설물관리 비즈니스 모델의 구현을 위해 필요한 기술적인 부분에 대하여 살펴본다. 먼저 통합운영센터의 구성, 각 교통시설물에 설치되는 센서의 구성, 현장 시설물과 통합운영센터, 유관기관, 시민간의 유무선 망 구성 등에 관한 전체적인 물리적 시스템 구성을 살펴보고, 네트워크, 인프라, 플랫폼 및 전송장치 각각에 대한 적용기술들을 제시한다.

그림 7. 교통시설물관리시스템 물리적 구성도
Fig. 7. A Physical Diagram of Traffic Facility Management System

그림 7은 교통시설물관리 비즈니스 모델 구현을 위한 물리적 시스템 구성 방안이다. 이 그림에서 전체시스템은 통합운영센터를 구성하는 요소들, 시설물에 부착된 셀시어들, 그리고 유관 기관과 시민으로 구성되며, 이들간의 네트워크로 이루어진다. 시설물과 통합운영센터는 자가방이나 전용회선을 통해
정보교환이 이루어지며, 현장 관리자의 경우에는 PDA나 휴대폰 단말기를 통해 CDMA망을 통해 접속한다. 현장 시설물에 설치된 센서들의 정보는 게이트웨이를 통해서 PLC망을 거쳐 통합운영센터와 통신하게 된다.

4.2 기술 요소 분석

지능형 교통시설물관리시스템을 구성하는 기술적인 요소는 크게 에뮬레이션, 플랫폼 기술, 각종센서와 서비스 등의 인프라 및 전송 장치로 구성된다. 그리고 네트워크 기술은 대부분을 위한 기술요소이다. 에뮬레이션은 시스템의 설계를 위한 기술요소로 전문가의 설계를 수행하는 범위라고 하겠다. 시스템설계 및 전송 장치는 다양한 유형의 센서와 서비스에 해당하는 기술들이다. 전체적으로는 센서와 서비스, 장치들 간의 통신을 지원한 기술요소이다. 그림 8은 전송장치의 프레임워크를 나타낸 것이다. 아래에서는 각각의 기술요소별 특징과 내용들에 대하여 살펴본다.

그림 8. 교통시설물관리 서비스 프레임워크
Fig. 8. Service Framework of Traffic Facility Management

4.2.1 에뮬레이션

교통시설물관리 서비스의 에뮬레이션은 시설물관리모니터링, 장애상황자동통보, 원격제어, 현장관리지원, 대면통화 제공서비스를 지원하기 위한 에뮬레이션으로 구성하고자 한다. 시설물관리모니터링 에뮬레이션은 센서가 부착된 교통시설물로부터 관리에 필요한 정보를 지급받아 또는 모바일 단말기를 이용하여 수집/저장한 정보를 지속적으로 모니터링하여 이상 유무나 장애 상황발생을 신속히 파악할 수 있도록 하여 서비스를 제공한다. 장애상황자동통보에 에뮬레이션은 수집된 교통시설물 정보를 일정한 주기에 의하여 상대 모니터링하며, 이상 상황이나 점검이 필요한 경우, 현장 담당자에게 SMS를 이용하여 통지하거나 운영센터에 자동으로 알리주는 기능을 제공한다. 원격제어 에뮬레이션은 교통시설물별로 주어진 조건에 따라 원격 제어하는 서비스를 제공한다. 또한, 현장 작업자가 가로등, 제어기, 분전함 등 교통시설물에 부착된 RFID 태그로부터 위치 정보를 수집하고, 조회하여 신속하게 현장 관리를 할 수 있도록 해주는 서비스를 제공하는 현장지원 에뮬레이션을 위한 애플리케이션이 있으며, 마지막으로 교통시설물에 대한 장애발생이나 사고발생시 시민들에게 알리어트들을 통해 관련정보를 제공해주는 정보제공 에뮬레이션이 있다. 이러한 애플리케이션 기능의 원활한 수행을 위해 필요한 기술요소들을 네트워크, 셀러브로 각종 장치들을 포함한 인프라 요소가 요구되며, 그림 8에서 서비스 플랫폼으로 구분하여 제시하고자 한다.

4.2.2 네트워크

에뮬레이션 기능의 원활한 수행을 위한 가장 기반이 되는 것은 네트워크 기술이다. 네트워크 기술은 교통시설물의 상태 정보 제공을 위해 각종 교통시설물들과 통합된 역서관리의 실시간 정보교환에 필수적이다. 지능형 교통시설물관리시스템에서는 정보 교환을 위해서는 PLC로 구성된 유선망과 zigbee, CDMA망으로 구성된 셀러브로 무선망 네트워크 요소들의 기술이 요구된다. 아래에서는 유무선 및 셀러브로 기술 각각에 대해 사용가능한 대안들을 살펴보고, 이들 기술이 지능형 교통시설물관리 서비스에 적합한 네트워크 기술인지를 제시한 다(16-18).

4.2.2.1 유선 네트워크

센서노드와 통합운영센터간의 통신은 유선망을 통해서 가능하다. 적응 가능한 유선네트워크는 광케이블이나 동축케이블을 이용하는 HFC 방식을 우선 고려할 수 있다. HFC 방식의 적응도는 각각 45M(DOWN)/10M(UP)이며, 경제성은 다른 방식에 비해 중간 정도이다. 일반 전화망과 이용하는 xDSL 방식을 고려할 수 있는데, 이 방식은 다른 방식에 비해 상대적으로 수도가 느린 단점이 있다. 다른 대안으로 전기선을 이용한 PLC방식을 고려할 수 있는데, 이는 가로등이나 전선중 일부 기존 교통시설물들이 전기 공급을 받아 작동하고 있으므로 추가적 유선네트워크 구축 없이 가능해진 방식이다. PLC 방식이 다른 방식에 비해 수도가 적지 않음을 뿐 아니라 상대적으로 경제적인 방식으로 PLC 방식을 적합한 유선네트워크 기술로 고려할 수 있다. 셀호스네트워크 방식을 비교하여 정리한 것이다.
표 3. 유선네트워크 비교
Table 3. Comparison of Wired Network

<table>
<thead>
<tr>
<th>구분</th>
<th>HFC</th>
<th>xDSL</th>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>사용 매체</td>
<td>광 + 동축</td>
<td>전화선</td>
<td>전기선</td>
</tr>
<tr>
<td>채널 구성</td>
<td>1:N</td>
<td>1:1</td>
<td>1:N</td>
</tr>
<tr>
<td>사용 속도</td>
<td>45M(DOWN)/10M(UP)</td>
<td>4~6Mbps</td>
<td>14~200</td>
</tr>
</tbody>
</table>
| 기술 차이 | 채널음답 특성 업로드 | 집원파열 | 통화음답 특성 업로드 | 집원파열특성 업로드 | 통화음답 특성 업로드
| | | | | |
| 경제성 | 보통 | 낮음 | 낮음 |

4.2.2.2 무선 네트워크

현장의 작업자는 후대단말기를 통해서 현장 시설물에 대한 관리 내역 정보를 입력하여 센서로 전송하거나, GIS 정보를 활용하여 시설물에 대한 위치정보를 확인하게 된다. 이 때 적응 가능한 통신 방식으로는 WiBro, WCDMA, HSDPA를 고려할 수 있는데, 상대적으로 현재 사용지역이 한정되어 있는 WiBro보다는 WCDMA 혹은 HSDPA 방식을 우선 고려하는 것이 적절하다. 표 4.5.6은 이 두 가지 방식의 특성을 정리한 것이다.

4.2.2.3 셀러 네트워크

고려 가능한 셀러네트워크 기술로는 지그비 방식과 블루투스 방식이 있다. 먼저 사용하는 주파수 대역과 전송속도를 살펴보면, 지그비 기술은 2.4GHz 대역 주파수 대역(- 지역별로 915MHz(미국) 혹은 868MHz(유럽) 이 사용되며 전송속도는 250Kbps(915MHz대에 40Kbps, 868MHz대의 경우에는 20Kbps)인 반면, 블루투스 방식의 경우에는 2.4GHz 주파수 대역, 전송속도는 1Mbps(환경에 따라 723Kbps~3Mbps까지 가능)로 블루투스 방식이 따른 것으므로 알려져 있다[18, 19]. 전송거리의 보통 지그비 방식이 10~20m, 블루투스의 경우에는 최대 100m까지 가능하나, 지그비 방식이 2.4GHz 주파수 대역에서는 실내의 경우 30m, 장애물 없는 외부의 경우에는 최대 100m까지 가능하다. 따라서 두 기술 간의 차이는 크게 존재하지 않는다고 할 수 있다.

표 4. WiBro 방식의 무선네트워크
Table 4. WiBro Wireless Network

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>특징</td>
<td>이동성 지원, 프로토콜 간섭 조정, VoIP 지원, 요청 방식 지원</td>
</tr>
<tr>
<td></td>
<td>- IP 기반으로 HSDPA의 전송속도의 두 배 이상, 경비 기간</td>
</tr>
<tr>
<td>접속속도</td>
<td>- 고속도로 주행 및 외부에서 데이터 서비스 특성 30Mbps(100%), 100Mbps(100%)</td>
</tr>
<tr>
<td>이동성</td>
<td>60Km/h</td>
</tr>
<tr>
<td>주파수</td>
<td>2.3 GHz</td>
</tr>
<tr>
<td>셀 반경</td>
<td>약 1Km</td>
</tr>
<tr>
<td>서비스/서비스</td>
<td>- 제한적인 QoS 지원으로 고속/대용량 서비스 중심으로 제공</td>
</tr>
<tr>
<td></td>
<td>- VoD, 네트워크게임, 파업전송, VoWMS, IM 등 VoD 제공시</td>
</tr>
<tr>
<td></td>
<td>- 음성 10全体员工 시 25%, 20여서 시 52%의 음성 응답 감소</td>
</tr>
<tr>
<td>서비스</td>
<td>COVERGAGE (%)</td>
</tr>
<tr>
<td>사용자</td>
<td>SKT, SKT, SK, SK, B로드브랜드</td>
</tr>
<tr>
<td>채널</td>
<td>채널 없음</td>
</tr>
<tr>
<td>이용료</td>
<td>정액제</td>
</tr>
<tr>
<td>수신 단말기</td>
<td>- 노트북, PDA, 이동전화</td>
</tr>
</tbody>
</table>

표 5. WCDMA 방식의 무선네트워크
Table 5. WCDMA Wireless Network

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
</table>
| 특징 | 4G의 단말기 일정한 클리어 시스템으로 통신/영상 전송 및 고속يل리먼트 사
| | 서비스 중심으로 제공 | |
| 접속속도 | - 속도증가는 WiBro 대비 30Mbps(100%), 100Mbps(100%) |
| 이동성 | 250Km/h |
| 주파수 | 1.9~2.2GHz |
| 셀 반경 | 약 1~3Km |
| 서비스/서비스 | - High Level QoS 기반의 고속/창용 /영상전화 및 고품질 데이터 서비스 |
| | - 음성/영상전화, SMS, 밸소리, USIM 기반의 음성 서비스 제공 |
| 서비스 | COVERGAGE (%) | 100% |
| 사용자 | SKT, KT |
| 채널 | 채널 없음 |
| 이용료 | 정액제 |
| 수신 단말기 | - 노트북, PDA, 이동전화 |

48 韓國情報技術学会 論文誌(2009. 12.)
표 6. HSDPA 방식의 무선네트워크
Table 6. HSDPA Wireless Network

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>특징</td>
<td>WCDMA + 허브형 고속 데이터 전송</td>
</tr>
<tr>
<td></td>
<td>- 무선 데이터 전송에 대한 저해가 적염</td>
</tr>
<tr>
<td></td>
<td>- TPS(Triple Play Service) 실현 - 음성통화, 무선인터넷, 모바일 방송</td>
</tr>
<tr>
<td>전송속도</td>
<td>속도등급는 Wbro 대비 제한적임 10Mbps(06년)</td>
</tr>
<tr>
<td>이용률</td>
<td>우수(150Km/h)</td>
</tr>
<tr>
<td>주파수</td>
<td>1.9-2.2GHz</td>
</tr>
<tr>
<td>설 변화</td>
<td>약 1~3Km</td>
</tr>
<tr>
<td>분류/서비스</td>
<td>- High Level QoS에 기반을 둔 음성/영상전화 및 고질서 데이터 서비스 중심으로 제공</td>
</tr>
<tr>
<td></td>
<td>- 음성/영상전화, SMS, 블로오, USIM 카드 기반의 급용 서비스 제공</td>
</tr>
<tr>
<td>서비스 Coverage</td>
<td>전국</td>
</tr>
<tr>
<td>사업자</td>
<td>SKT, KT</td>
</tr>
<tr>
<td>재범</td>
<td>제한 없음</td>
</tr>
<tr>
<td>이용료</td>
<td>종합전</td>
</tr>
<tr>
<td>수신 단말기</td>
<td>이동전화, 일부 PDA</td>
</tr>
</tbody>
</table>

제2단 내역은 블루투스 방식이 1M인 반면, 지그브 방식은 600K~5M의 범위로 갖는다. 교통시설물 센서에서의 통신에 필요한 연결기기수(노드)는 지그브 방식이 254 노드까지 가능할 반면, 블루투스 방식은 8개 노드만 가능하다. 두 기술의 특징을 비교해 본 결과, 확장성이 용이하고, 여러 개(최대 254개) 기기를 연결할 수 있으며, 저비용으로 구축이 가능한 지그브 방식을 우선적으로 고려하는 것이 적절하다. 다음 표 7은 두 가지 방식, 지그브(1.0)과 블루투스(2.1) 방식의 센서네트워크 기술을 비교하여 정리한 것이다.

4.2.3 인프라

인프라는 각종 센서류와 시설물관리시스템들로 이루어진다. 여기에는 운수도 센서, 평화/공속 센서, 노면센서, 화재감지 등 각종 센서와 CCTV, GIS서비스, 제어서비스, 셀룰럼 등 동합운영센터에 설치되어 있는 각종 서비스가 포함된다(16). 주요 센서류의 기능을 살펴보면, 화재감지센터는 태양 내에 있거나 발생 시 자동으로 감지하여 신호를 전송해주는 역할을 한다. 온/습도 센서는 온도/습도 변화를 일정 간격으로 전송해 주는 설비이며, 파손센서는 가로등, 제어기, 분합, 신호등, 디스플레이 화면 발생시 신호 전송하는 장치이다. 또한 CCTV는 교량, 터널 시설들의 상황 정보를 영상으로 환경화하여 전송해주게 역할을 담당하게 된다. 이상의 인프라에 대한 내용을 요약하면 표 8과 같다.

표 7. 센서 네트워크 기술 비교
Table 7. Comparison of Sensor Network

<table>
<thead>
<tr>
<th>구분</th>
<th>Zigbee(1.0)</th>
<th>Bluetooth(2.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>데이터</td>
<td>전송 속도</td>
<td>20Kbps~250Kbps</td>
</tr>
<tr>
<td></td>
<td>주파수</td>
<td>2.4GHz, 868/915MHz</td>
</tr>
<tr>
<td></td>
<td>범위</td>
<td>10~30m 내외 (최대 100m)</td>
</tr>
<tr>
<td>노드 수</td>
<td>254</td>
<td>8</td>
</tr>
<tr>
<td>재범</td>
<td>600K~5M</td>
<td>1M</td>
</tr>
<tr>
<td>전송 전략</td>
<td>0 dBm</td>
<td>0~20 dBm</td>
</tr>
<tr>
<td>전송 전략</td>
<td>빠른 저호환 밀집도</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 보안 및 데이터의 손실 가능</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 제한적 전송지</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 반대로 254개</td>
<td></td>
</tr>
</tbody>
</table>

 표 8. 교통시설물관리시스템 기술요소: 인프라
Table 8. Infrastructure of Traffic Facilities Management System

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>센서류</td>
<td>RFID 태그에 외부 환경정보(온도, 습도, 공질/공속, 노면, 변화, 조도, 화재, 경질, 지진, 낙석, 파손 등)를 위한 센서와 전장용등 메타데이터를 추가할 정보</td>
</tr>
<tr>
<td>CCTV</td>
<td>교량, 태양, 일반도로에서의 시설물에 대한 외부 모니터링을 위한 장비</td>
</tr>
<tr>
<td>시설물 관리 서비스</td>
<td>교통시설물에 설치된 센서들에서 수집된 정보를 저장/관리하여 위치정보 제공, 시설물관리, 시설물정보제공, 유지보수 이력관리 등의 기능을 수행하는 H/M/S/W 시스템</td>
</tr>
</tbody>
</table>
4.2.4 플랫폼

각종 센서와 서비스 간의 통신을 위한 기술적 요소들로는 RFID, USN, LBS/GIS가 요구되며, 이들 정보를 교통시설 물관리와 서비스와 연계하기 위한 RFID 미들웨어, USN 미들웨어, 그리고 LBS/GIS 미들웨어로 이루어진 서비스 플랫폼으로 구성된다(13). 서비스 플랫폼을 구성하고 있는 기술요소들과 미들웨어에 대한 설명이 표 9에 요약되어 있다. 이 중, RFID는 태그와 리더로 구성되는데, RFID 태그는 자료, 신호등 교통시설물에 부착되어 시설물 위치 및 시설물 이력정보를 제공해주는 역할을 수행한다. 그리고 RFID 리더는 RFID 태그와 통신하여 이력정보 및 위치정보를 이동하면서 확인할 수 있게 해주는 장치이다. 이 밖의 장비는 현장 관리를 위한 모바일 단말기가 있다. 모바일 단말기는 교통시설물에 부착된 RFID 태그로부터 위치정보 및 시설 정보를 취득하기 위한 휴대용 단말기이다.

표 9. 교통시설물관리서비스 기술요소: 플랫폼

<table>
<thead>
<tr>
<th>구성</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFID</td>
<td>RFID 태그 및 리더를 활용하여 도로 및 저장 정보를 무선 주파수로 수신, 수신 및 처리하는 비접촉식 시스템</td>
</tr>
<tr>
<td>USN</td>
<td>유리박스 기반으로 구성된 센서네트워크를 통해서 정보를 주고받을 수 있는 서비스 기술</td>
</tr>
<tr>
<td>LBS/GIS</td>
<td>위치정보를 활용하여 교통시설물에 대한 위치 정보를 제공받을 수 있는 기술</td>
</tr>
<tr>
<td>RFID Middleware</td>
<td>RFID 태그를 통해 수집된 정보를 수신, 수신하기 위한 미들웨어</td>
</tr>
<tr>
<td>USN Middleware</td>
<td>센서를 통해 수집된 정보를 제공하기 위한 미들웨어</td>
</tr>
<tr>
<td>LBS/GIS Middleware</td>
<td>위치기반 실시간 정보 제공을 위한 미들웨어</td>
</tr>
</tbody>
</table>

4.3 기술 선정 기준

센서류, RFID 태그, 모바일 단말기와 같은 장치들은 이미 다양한 유형의 제품들이 시중에 나와 있다. 여러 제품들이 중에서 특정 제품을 선정할 경우, 각 항목별 제품 선정을 위한 기준이 마련되어 있어야함으로 RFID 태그와 센서, 그리고 모바일 단말기의 선정 기준에 대해 제시한다(8,13).

먼저, RFID 태그의 경우에는 태그로 제시 가능한 정보와 인식을 기존으로 선정하여야 한다. 교통시설물관련 필 요정보를 제공할 수 있는지 여부에 요구되는 인식을 사전에 설정하여 일정 수준 이상의 성능을 나타내는 제품을 선정한다. 태그는 GIS와 연계된 시설물의 위치정보를 포함하고 있어야하며, 시설물의 이력관리 정보를 제공해야 한다. 또한 태그 인식률이 95%이상을 제공할 수 있어야 차고 없이 작 업이 진행될 수 있다.

센서류의 경우에는 감지하고자 하는 항목의 특성에 따라 평가 방법 및 기준이 달라진다. 온도 센서의 경우 보통 영하 30도에서 60도 범위를 감지할 수 있어야 하며, 오차는 거의 없어야 한다. 습도의 경우에는 95% 습도 범위까지 측정 가능한 제품을 선택한다. 물량 및 유속은 1분 단위로 측정할 수 있으며, 물을 측정 가능해야 한다. 또한 모여서의 경우에는 모면 상태의 변화를 즉각 감지할 수 있는 센서를 선정하여야 하며, 조도 센서의 경우에는 터널이나 지하차도에서 조도 변화를 즉각 감지할 수 있는 능성을 제공해야 한다. 화재, 기선, 지진 센서의 경우에는 발생 시 즉각 경고 신호를 출력할 수 있는 기능을 제공한다. 특히 낙식센서와 회전센서의 경우에는 IP 카메라와 함께 사용할 경우 사고 발생 시 그 규모와 바로 확인하여 적절한 대응을 취할 수 있다. 모바일 단말기의 경우에는 RF디 류 기능이 있어야 하며, CDMA 혹은 HSDPA 통신을 지원할 수 있어야 하며, 모바일을 통해 GIS 정보를 확인할 수 있는 실시간 이상의 해상도와 터치스크린 지원 등 기능이 있어야 한다. 이상의 RFID 태그와 센서 그리고 모바일 단말기의 평가 방법 및 선정 기준은 표 10에 정리되어 있다.

5. 제안모델 분석

본 연구에서는 지능형 교통시설물관리 서비스를 위한 비즈니스 모델을 제시하였으며, 제안 모델의 구현을 위해 필요한 기술요소들을 함께 제시하였다. 이 장에서는 본 연구에서 제안한 모델이 기존 연구의 모델과 어떠한 차이점인지를 제시한다.

첫째, 본 연구에서 제안한 비즈니스 모델의 서비스 범위는 기존 사업들에 비해 서비스 제공 범위가 포함적이고, 구체적이 다. 앞서 II장에서 기술한 터널이나 교량 시설물에 대한 서비스는 기본적으로 단위시설물에 대한 시설물 안전관리를 목적으로 하고 있다. 또한, 보다 평생위치에 추진되고 있는 국토해양부의 시설물안전관리네트워크 사업 역시 교량, 터널, 도로, 하천채방 등 각종 공동시설물에 대한 안전관리를 목적으로 추진하고 있는 사업이다. 이에 반해 본 연구에서는 제공하고자 하는 서비스 기능을 시설물을 모니터링, 검계, 모니터링 및 안전관리를 포함하여 보다 구체적으로 제시하였으며, 시민들에게 정보 제공하는 서비스에 대해서도 포함하고 있다. 그리고 제안한 서비스 기능들이 어떠한 비즈니스 프로세스를 통해 제공되는데지를 함께 제시하였다.
표 10. 기술 선정 기준
Table 10. Criteria for Technology Selection

<table>
<thead>
<tr>
<th>구분</th>
<th>항목</th>
<th>평가방법</th>
<th>평가기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFID 태그 정보</td>
<td>태그</td>
<td>"GIS와 연계하여 시설물 위치정보 제공"</td>
<td>95% 이상</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"시설물 이력정보 제공"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFID 태그 인식률</td>
<td>"RFID Tag 인식률"</td>
<td>±0.05%</td>
</tr>
<tr>
<td>온도 센서</td>
<td>감지 가능 범위</td>
<td>-30~60℃</td>
<td>±2%</td>
</tr>
<tr>
<td></td>
<td>오차율</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>습도 센서</td>
<td>감지 가능 범위</td>
<td>-95%</td>
<td>±2%</td>
</tr>
<tr>
<td></td>
<td>오차율</td>
<td>±0.05%</td>
<td></td>
</tr>
<tr>
<td>풍향/풍속 센서</td>
<td>바람의 방향 변화와 풍속을 일정간격으로 감지할 수 있어야 함</td>
<td>1분단위 측정</td>
<td></td>
</tr>
<tr>
<td>노전 센서</td>
<td>노면상태 변화 감지 가능</td>
<td></td>
<td></td>
</tr>
<tr>
<td>조도 센서</td>
<td>터널 내 조명 밝기 변화 감지 가능</td>
<td></td>
<td></td>
</tr>
<tr>
<td>화재 센서</td>
<td>연기/불꽃 발생 감지</td>
<td>발생여부 디지털 출력</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>발생있으면 디지털 출력</td>
<td></td>
</tr>
<tr>
<td>균열 센서</td>
<td>터널 내 외부 균열 발생 감지</td>
<td>발생여부 디지털 출력</td>
<td></td>
</tr>
<tr>
<td>지진 센서</td>
<td>터널/교량의 지진 발생 감지</td>
<td>발생여부 디지털 출력</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCTV와 함께 작동</td>
<td></td>
</tr>
<tr>
<td>낙석 센서</td>
<td>터널 출입구의 낙석 감지기능으로</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCTV와 함께 작동</td>
<td></td>
</tr>
<tr>
<td>모바일 단말기</td>
<td>RFID 리더가 부착된 단말기</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"무선 통신 지원 여부"</td>
<td>CDMA 또는 HSDPA 지원</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"단말 왜곡 해상도"</td>
<td>320x240 이상</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"최적.foo 지원 여부"</td>
<td>지원 가능</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"시설물 정보 및 GIS 정보 표준화"</td>
<td></td>
</tr>
</tbody>
</table>

VI. 결론

현재 우리나라에서는 유비쿼터스 기술을 활용한 u-시티 건설 추진이 다양하게 진행되고 있다. 유비쿼터스 도시의 적 용 분야는 도시 점론에 걸친 주거, 의료, 환경, 교육, 기반 시설 등 도시 기능 유지를 위한 전 분야에 적용된다. 본 연구 에서는 도시 기반 시설들 중 특히 시민 생활과 밀접하게 관련 된 교통시설물 분야에 대하여 통합적인 비즈니스 모델과 이의 구현을 위해 필요한 기술 요소를 살펴보고, 적절한 기술 도 입 방안에 대하여 제시하였다.

적절한 서비스 기능 및 서비스 프로세스, 이해 관계자들 간의 관계에 대한 검토가 없는 기술의 도입은 기술 도입 자체 가 목적이 될 수 있다. 이에 본 연구는 기술 검토와 앞서 교통 시설물 관리 서비스에 필요한 서비스 기능을 제시하였고, 기 능 검토를 위한 비즈니스 프로세스와 프로세스 참여자들 간의 수요/공급 관계 및 수익 모델을 제시함으로써, 기술 도입 이전에 명확한 사업 모델을 수립할 수 있는 가이드라인을 제시하였다. 다시 말해, 유비쿼터스 기술의 المباشر적인 세부적으로 대두되는 기술의 적용이 단지 기술 도입의 목적이 아닌 새로운 비즈니스
스 모델의 창출을 위한 도구로 활용할 수 있는 방안을 제시한 점에 본 연구의 의미가 있다.

또한, 본 연구에서는 교통시설물관리서비스 비즈니스 모델 구현을 위한 시스템 구축 방안을 함께 제시하였다. 시스템 구축 방안에서는 먼저 서비스 프레임워크를 제시하였는데, 이는 보다 구조화된 모델 구현에 필요한 기술 요구를 명확히 할 수 있도록 등으로 구현하고 있다. 여기에는 필요한 유/무선 통신망 기술, 센서 및 RFID 장치 등의 저가 정비, 그리고 각종 인프라 등의 기술 요구를 포함하고 있으며, 이들 기반으로 한 애플리케이션 영역에 대해 제시하였다.

본 연구에서 제시한 첨예한 교통시설물관리서비스 비즈니스 모델 및 시스템 구현을 통해서 다음과 같은 효과를 기대할 수 있을 것으로 예상된다. 첫째, 신호등, 가로등 등 각종 도로 교통시설물에 대한 사고 유발 요인 발생 시 신속한 대처로 원활한 교통조로의 확보와 함께 시민들의 안전에 기여할 수 있다. 둘째, 시설물에 대한 문제 발생이나 사고 발생 시 경찰 등 관련 기관 현장 출동 전에 원활한 채택을 통해 사전 조치를 함으로써 안전사를 사전 예방할 수 있는 효과를 기대할 수 있다. 밖에 교통시설물에 대한 이력관리를 통해 정책 상황 발생을 사전에 예방할 수 있으며, 해당 교통시설의 이상 상황에 대한 정보를 운전자에게 교통안내표시를 통해 신속히 안내함으로써, 교통사고의 사전 예방에도 기여하게 된다. 이러한 경제적인 효과와 이외에도 시설물 상해 및 환경정보의 원격 모니터링을 통한 관리 효율의 인건비 절감이 가능하게 되며, 숫자화로 진행되는 시설관리를 원격채택을 통한 인건비 절감, 그리고 도로 상태에 맞는 가로마크 선택 정동으로 인한 비용 절감 등이 가능하다.

본 연구에서 제안한 모델은 앞서 V-경과 이 장에서 기술한 바와 같이 기존의 유사한 사례와의 차별성 및 정점과 효과가 있으나, 실제 제안 모델이 아직까지 실제로 구현되기에는 많은 준비가 필요하다. 우선 비즈니스 모델 참여자들 간의 협의를 통한 사업추진방안이 개발되어야 하며, 사업 추진시 발생할 수 있는 법적, 재정적, 줄개체들이 정명이고, 조건에 해결되어야 한다. 아울러 모델 접근을 위한 소규모 테스트 배드를 구축하여 사전에 모델의 적절성을 검증, 보완한다면 보다 실용적 조어의 모델로 발전할 수 있게 될 것이다.

참고문헌

[19] 지그비포럼 "http://www.zigbeeforum.or.kr"
저 자 소개

유성열
1989: 고려대학교 공학사
1992: 한국과학기술원 공학석사
2001: 한국과학기술원 공학박사
2002 - 현재: 부산가톨릭대학교 유동경남정보학부 부교수
관심분야: u-city, BPM, IT평가