Effects of Silicone Polymer Blends on Physical Properties of Dental Polyvinylsiloxane Impression Materials

실리콘폴리머의 혼합사용이 폴리비닐실록산 치과용 인상재의 물성에 미치는 영향

  • Lim, Chang-Ha (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University) ;
  • Kim, Min-Kang (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University) ;
  • Kim, Young-Chul (Faculty of Applied Science and The Research Institute for Catalyst, Chonnam National University) ;
  • Park, Nam-Cook (Faculty of Applied Science and The Research Institute for Catalyst, Chonnam National University) ;
  • Song, Ho-Jun (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University) ;
  • Park, Yeong-Joon (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University)
  • 임창하 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소) ;
  • 김민강 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소) ;
  • 김영철 (전남대학교 응용화학공학부 및 촉매연구소) ;
  • 박남국 (전남대학교 응용화학공학부 및 촉매연구소) ;
  • 송호준 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소) ;
  • 박영준 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소)
  • Published : 2009.03.30

Abstract

The purpose of this study was to investigate the effects of combined use of several types of silicone polymers on the physical properties of the dental polyvinylsiloxane impression materials (PVS). Four types of silicone prepolymers having different molecular weight and vinyl group position, and two types of cross-linkers having differently located silyl hydride functional groups were used in various combinations for the formulation. The samples containing bimodal or trimodal prepolymers showed higher tensile strength, elongation at break, and elastic deformation than those containing only one type of prepolymer. The samples using CR210 cross-linker which has side- and terminal-silyl hydride groups showed higher elastic deformation and elongation at break than those using CR101 cross-liker which has side-only silyl hydride group. High vinyl content prepolymer having side vinyl group delayed setting even though it enhanced tensile strength. Further studies are needed to clarify the specific role of this component on setting time and to find appropriate controlling methods for making improved PVS with optimum workability.

References

  1. K. J. Anusavice, 'Skinner's science of dental materials', 11th ed., p. 205-231, Saunders Press, St. Louis, 2003
  2. T. Aziz, W. Mark, and J. Robert, 'Development of a new poly(dimethylsiloxane) maxillofacial prosthetic material', J. Biomed. mater. Res. B. Appl. Biomater., 65B, 252 (2003) https://doi.org/10.1002/jbm.b.10559
  3. J. F. McCabe and H. J. Wilson, 'Addition curing silicone rubber impression materials. An appraisal of their physical properties', Brit. Dent. J., 145, 17 (1978) https://doi.org/10.1038/sj.bdj.4804105
  4. J. H. Lai, L. L. Wang, C. C. Ko, R. L. De Long, and J. S. Hodges, 'New organosilicon maxillofacial prosthetic materials', Dent. Mater., 18, 281 (2002) https://doi.org/10.1016/S0109-5641(01)00050-1
  5. A. K. Bhowmick and H. L. Stephens, 'Handbook of elastomers: new developments and technology', p. 562-586, Marcel Dekker Press, New York, 1988
  6. A. G. Andreopoulos, G. L. Polyzois and P. P. Demetriou, 'Shrinkage mechanism of elastomeric impression materials', J. Mater. Sci. Lett., 7, 235 (1988) https://doi.org/10.1007/BF01730181
  7. B. B. Boonstra, H. Cochrane, and E. M. Dannenberg, 'Reinforcement of silicone rubber by particulate silica', Rubber Chem. Tech., 48, 558 (1975) https://doi.org/10.5254/1.3539660
  8. E. Warrick, O. Pierce, K. Polmanteer, and J. Saam, 'Silicone elastomer developments 1967-1977', Rubber Chem. Tech., 52, 437 (1979) https://doi.org/10.5254/1.3535229
  9. J. Klooster, G. I. Logan, and A. H. L. Tjan, 'Effects of strain rate on the behavior of elastomeric impression', J. Prosthet. Dent., 66, 292 (1991) https://doi.org/10.1016/0022-3913(91)90252-R
  10. J. R. Williams and R. G. Craig, 'Physical properties of addition silicones as a function of composition', J. Oral. Rehabil., 15, 639 (1988) https://doi.org/10.1111/j.1365-2842.1988.tb00202.x
  11. W. J. Finger, 'Significance of filler content to properties of silicone impression materials', Dent Mater, 4, 33 (1988) https://doi.org/10.1016/S0109-5641(88)80085-X
  12. K. Bellamy, G. Limbert, M. G. Waters, and J. Middleton, 'An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects', Biomaterials, 54, 5061 (2003)
  13. G. B. Shah and R. W. Winter, 'Effect of bimodality on tear properties of silicone networks', Macromol. Chem. Phys., 197, 2201 (1996) https://doi.org/10.1002/macp.1996.021970711
  14. A. L. Andrady, M. A. Llorente, and J. E. Mark, 'Model networks of end-linked polydimethylsiloxane chains. VII. Networks designed to demonstrate non-Gaussian effects related to limited chain extensibility', J. Chem. Phys., 72, 2282 (1980) https://doi.org/10.1063/1.439472
  15. A. L. Andrady, M. A. Llorente, and J. E. Mark, 'Model networks of end-linked polydimethylsiloxane chains. IX. Gaussian, non-Gaussian, and ultimate properties of the trifunctional networks', J. Chem. Phys., 73, 1439 (1980) https://doi.org/10.1063/1.440205
  16. M. A. Llorente, A. L. Andrady, and J. E. Mark, 'Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate properties', J. Polymer Sci. Polymer Phys. Ed., 19, 621 (1981) https://doi.org/10.1002/pol.1981.180190406
  17. S. K. Patel, S. Malone, C. Cohen, J. R. Gillmor, and R. H. Colby, 'Elastic modulus and equilibrium swelling of poly(dimethylsiloxane) networks', Macromolecules, 25, 5241 (1992) https://doi.org/10.1021/ma00046a021
  18. J. E. Mark and A. L. Andrady, 'Model networks of end-linked polydimethylsiloxane chains. X. Bimodal networks prepared in two-stage reactions designed to give high spatial heterogeneity', Rubber Chem. Tech., 54, 366 (1981) https://doi.org/10.5254/1.3535811
  19. Z. M. Zhang and J. E. Mark, 'Model networks of end-linked polydimethylsiloxane chains. XIV. Stress-strain, thermoelastic, and birefringence measurements on the bimodal networks at very low temperatures', J. Polymer Sci. Polymer Phys. Ed., 20, 473 (1982) https://doi.org/10.1002/pol.1982.180200309
  20. L. C. Yanyo and F. N. Kelley, 'Effect of Chain Length Distribution on the Tearing Energy of Silicone Elastomers', Rubber Chem. Tech., 60, 78 (1987) https://doi.org/10.5254/1.3536123
  21. M. J. Edwark and A. Richard, U.S. Patent 3957713 (1976)
  22. K. Hiroshi and F. Shunichi, U.S. Patent 5637628 (1997)
  23. Council on Dental Materials and Devices, 'Revised American Dental Association specification No. 19 for non-aqueous, elastomeric dental impression materials', J. Am. Dent. Assoc., 94, 733 (1977) https://doi.org/10.14219/jada.archive.1977.0334
  24. ASTM Committee. Standard test methods for vulcanized rubber and thermoplastic rubbers and thermoplastic elastomers-Tension [D412-98]. New York: American National Standards Institute, 1998
  25. G. B. Shah, 'The effect of bimodality on the tear properties of filled silicone networks', J. Appl. Polymer Sci., 94, 1719 (2004) https://doi.org/10.1002/app.21085
  26. T. Aziz, M. Waters, and R. Jagger, 'Analysis of the properties of silicone rubber maxillofacial prosthetic materials', J. Dent., 31, 67 (2003) https://doi.org/10.1016/S0300-5712(02)00084-2
  27. W. Finger and M. Komatsu, 'Elastic and plastic properties of elastic dental impression materials', Dent. Mater., 1, 129 (1985) https://doi.org/10.1016/S0109-5641(85)80004-X
  28. C. John, T. Yutaka, and P. L. Eugene, 'Clinically relevant mechanical properties of elastomeric impression materials', Int. J. Prosthodont., 11, 219 (1998)