Performance Improvement of Multi-Start in uDEAS Using Guided Random Bit Generation

유도된 이진난수 생성법을 이용한 uDEAS의 Multi-start 성능 개선

  • Published : 2009.04.01

Abstract

This paper proposes a new multi-start scheme that generates guided random bits in selecting initial search points for global optimization with univariate dynamic encoding algorithm for searches (uDEAS). The proposed method counts the number of 1 in each bit position from all the previously generated initial search matrices and, based on this information, generates 0 in proportion with the probability of selecting 1. This rule is simple and effective for improving diversity of initial search points. The performance improvement of the proposed multi-start is validated through implementation in uDEAS and function optimization experiments.

References

  1. T. G. Kolda, R. M. Lewis, and V. Torczon, 'Optimization by direct search: new perspectives on some classical and modern methods,' SIAM Review, vol. 45, no. 3, pp. 385-482, 2003 https://doi.org/10.1137/S003614450242889
  2. J -W. Kim, T. Kim, Y. Park, and S. W. Kim, 'On-load motor parameter identification using univariate dynamic encoding algorithm for searches,' IEEE Trans. Energy Conversion, vol. 23, no. 3, pp. 804-813, Sept. 2008 https://doi.org/10.1109/TEC.2008.926068
  3. Handbook of metaheuristics, Kluwer Academic Publishers, 2003.Inc. 2006
  4. J-W. Kim, T. Kim, J-Y. Choi, and S. W. Kim, 'On the global convergence of univariate dynamic encoding algorithm for searches (uDEAS),' International Journal of Control, Automation, and Systems, vol. 6, no. 4, pp. 571-582, Aug. 2008
  5. D. E. Goldberg, Genetic Algorithm In Search, Optimization and Machine Learning, Addision Wesley, 1989
  6. M. Dorigo and L. M. Gambardella, 'Ant colony system: a cooperative learning approach to the travelling salesman prolbem,' IEEE Trans. Evolution. Comput. vol. 1, no. 1, pp. 53-66, April 1997 https://doi.org/10.1109/4235.585892
  7. J. -W. Kim and S. W. Kim, 'Parameter identification of induction motors using dynamic encoding algorithm for searches (DEAS),' IEEE Trans. Energy Conversion, vol. 20, no. 1, pp. 16-24, March 2005 https://doi.org/10.1109/TEC.2004.837287
  8. J. -W. Kim and S. W. Kim, 'Numerical method for global optimization: dynamic encoding algorithm for searches (DEAS),' lEE Proc. -Control Theory and Appl., vol. 151, no. 5, pp. 661-668. Sept. 2004 https://doi.org/10.1049/ip-cta:20040901
  9. J. -W. Kim and S. W. Kim, 'A fast computational optimization method: univariate dynamic encoding algorithm for searches (uDEAS),' IEICE Trans. Fundamentals, vol. E90-A, no. 8, pp. 1679-1689, Aug. 2007 https://doi.org/10.1093/ietfec/e90-a.8.1679
  10. R. C. Eberhart and J. Kennedy, 'A new optimizer using particle swarm theory,' Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan. pp. 39-43, 1995 https://doi.org/10.1109/MHS.1995.494215
  11. C. Audet and J. E. Dennis JR, 'Mesh adaptive direct search algorithms for constrained optimization,' SIAM Journal on Optimization, vol. 17, no. 1, pp. 188-217, 2006 https://doi.org/10.1137/040603371
  12. 김태규, 김종욱, 'DEAS를 이용한 변압기 코아의 최적설계,' 대한전기학회 논문지, 56권, 6호, pp. 1055-1063, June 2007