Prediction of Conditional Variance under GARCH Model Based on Bootstrap Methods

붓스트랩 방법을 이용한 일반화 자기회귀 조건부 이분산모형에서의 조건부 분산 예측

  • 김희영 (고려대학교 의학통계학교실) ;
  • 박만식 (고려대학교 의학통계학교실)
  • Published : 2009.03.30


In terms of generalized autoregressive conditional heteroscedastic(GARCH) model, estimation of prediction interval based on likelihood is quite sensitive to distribution of error. Moveover, it is not an easy job to construct prediction interval for conditional variance. Recent studies show that the bootstrap method can be one of the alternatives for solving the problems. In this paper, we introduced the bootstrap approach proposed by Pascual et al. (2006). We employed it to Korean stock price data set.


  1. 박만식, 김나영, 김희영 (2008). Clustering Korean stock return data based on GARCH model, <한국통계학회논문집>, 15, 925-937
  2. Baillie, R. T. and Bollerslev, T. (1992). Prediction in dynamic models with time dependent conditional variances, Journal of Econometrics, 52, 91-113
  3. Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics, 31, 307-327
  4. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007
  5. Miguel, J. A. and Olave, P. (1999). Bootstrapping forecast intervals in ARCH models, Test, 8, 345-364
  6. Pascual, L., Romo, J. and Ruiz, E. (2006). Bootstrap prediction for returns and volatilities in GARCH models, Computational Statistics & Data Analysis, 50, 2293-2312
  7. Rydberg, T. H. (2000). Realistic statistical modelling of financial data, International Statistical Review, 68, 233-258
  8. Taylor, S. J. (1986). Modelling Financial Time Series, John Wiley & Sons, New York