DOI QR코드

DOI QR Code

Goodness-of-fit Test for the Weibull Distribution Based on Multiply Type-II Censored Samples

  • Kang, Suk-Bok (Dept. of Statistics, Yeungnam Univ.) ;
  • Han, Jun-Tae (Institute for National Health Insurance, National Health Insurance Co.)
  • Published : 2009.03.30

Abstract

In this paper, we derive the approximate maximum likelihood estimators of the shape parameter and the scale parameter in a Weibull distribution under multiply Type-II censoring by the approximate maximum likelihood estimation method. We develop three modified empirical distribution function type tests for the Weibull distribution based on multiply Type-II censored samples. We also propose modified normalized sample Lorenz curve plot and new test statistic.

References

  1. Aho, M., Bain, L. J. and Engelhardt, M. (1985). Goodness-of-fit tests for the Weibull distribution with unknown parameters and heavy censoring, Journal of Statistical Computation and Simulation, 21, 213-225 https://doi.org/10.1080/00949658508810816
  2. Balakrishnan, N., Gupta, S. S. and Panchapakesan, S. (1995). Estimation of the location and scale parameters of the extreme value distribution based on multiply Type-Ⅱ censored samples, Com-munications in Statistics-Theory and Methods, 24, 2105-2125 https://doi.org/10.1080/03610929508831605
  3. Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressive Type-Ⅱ censoring, Journal of Statistical Computation and Simu-lation, 74, 25-45 https://doi.org/10.1080/0094965031000105881
  4. Cho, Y. S., Lee, J. Y. and Kang, S. B. (1999). A study on distribution based on the transformed Lorenz curve, The Korean Journal of Applied Statistics, 12, 153-163
  5. Gibson, E. W. B. and Higgins, J. J. (2000). Gap-ratio goodness of fit tests for Weibull or extreme value distribution assumptions with left or right censored data, Communications in Statistics-Simulation and Computation, 29, 541-557 https://doi.org/10.1080/03610910008813627
  6. Han, J. T. and Kang, S. B. (2006), Estimation for two-parameter Rayleigh distribution based on multiply Type-Ⅱ censored sample, Journal of the Korean Data & Information Science Society, 17, 1319-1328
  7. Kang, S. B. and Cho, Y. S. (2001). A study on distribution based on the normalized sample Lorenz curve, The Korean Communications in Statistics, 8. 185-192
  8. Kang, S. B. and Lee, H. J. (2006a). Goodness-of-fit tests for the Weibull distribution based on the sample entropy, Journal of the Korean Data & Information Science Society, 17, 259-268
  9. Kang, S. B. and Lee, S. K. (2006b). Test for the exponential distribution based on multiply Type-Ⅱ censored samples, The Korean Communications in Statistics, 13, 537-550 https://doi.org/10.5351/CKSS.2006.13.3.537
  10. Lieblein, J. and Zelen, M. (1956). Statistical investigation of the fatigue life of deep-groove ball bearings, Journal of Research of the National Bureau of Standards, 57, 273-316 https://doi.org/10.6028/jres.057.033
  11. Ng, H. K. T., Chan, P. S. and Balakrishnan, N. (2004). Optimal progressive censoring plan for the Weibull distribution, Technometrics, 46, 470-481 https://doi.org/10.1198/004017004000000482
  12. Sanjel, D. and Balakrishnan, N. (2008). A Laguerre polynomial approximation for a goodness-of-fit test for exponential distribution based on progressively censored data, Journal of Statistical Computation and Simulation, 78, 503-513 https://doi.org/10.1080/00949650701216612
  13. Wang, B. (2008). Goodness-of-fit test for the exponential distribution based on progressively Type-Ⅱ censored sample, Journal of Statistical Computation & Simulation, 78, 125-132 https://doi.org/10.1080/10629360600944266
  14. Wu, J. W. and Yang, C. C. (2002). Weighted moments estimation of the scale parameter of the exponential distribution based on a multiply Type -Ⅱ censored sample, Quality and Reliability Engineering International, 18, 149-154 https://doi.org/10.1002/qre.456

Cited by

  1. On the maximum likelihood estimators for parameters of a Weibull distribution under random censoring vol.23, pp.3, 2016, https://doi.org/10.5351/CSAM.2016.23.3.241