DOI QR코드

DOI QR Code

PERMUTATION FUNCTIONS ARISING FROM INTERPOLATIONS

  • Jeong, Sangtae ;
  • Lee, Hyeon-Ok
  • Published : 2009.04.30

Abstract

In this paper, we give three criteria for non-polynomial functions interpolated from the set of univariate polynomials of degree less than m over a finite field to be a permutation on the same set.

Keywords

$A_m$-permutation functions;$A_m$-permutation polynomials;extended Hermite-Dickson criterion;Carlitz polynomials;digit derivatives

References

  1. L. Carlitz, A set of polynomials, Duke Math. J. 6 (1940), 486–504 https://doi.org/10.1215/S0012-7094-40-00639-1
  2. D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996
  3. S. Jeong, Hyperdifferential operators and continuous functions on function fields, J. of Number Theory 89 (2001), 165–178 https://doi.org/10.1006/jnth.2000.2629
  4. S. Jeong, Am-Permutation Polynomials, J. Aust. Math. Soc. 80 (2006), 149–158 https://doi.org/10.1017/S1446788700013033
  5. R. Lidl and H. Niederreiter, Finite fields, Encyclopedia Math. Appl. Vol. 20, Addison-Wesley, Reading, Mass 1983
  6. K. Conrad, The digit principle, J. of Number Theory 84 (2000), 230–257 https://doi.org/10.1006/jnth.2000.2507
  7. C. Hermite, Sur les fonctions de sept letters, C. R. Acad. Sci. Paris 57 (1863), 750–757, Oeuvres, Vol.2, 280–288, Gauthier-Villars, Paris, 1908