DOI QR코드

DOI QR Code

Modification of Palm Mid Fraction with Stearic Acid by Enzymatic Acidolysis Reaction

효소적 Acidolysis를 이용한 Stearic Acid 함유 팜중부유의 개질

  • Jeon, Mi-Sun (Dept. of Food Science and Technology, Chungnam National University) ;
  • Lee, Yun-Jeung (Dept. of Food Science and Technology, Chungnam National University) ;
  • Kang, Ji-Hyun (Food R&D CJ Cheiljedang Corporation) ;
  • Lee, Jeung-Hee (Institute of Agricultural Science, Chungnam National University) ;
  • Lee, Ki-Teak (Dept. of Food Science and Technology, Chungnam National University)
  • 전미선 (충남대학교 식품공학과) ;
  • 이윤정 (충남대학교 식품공학과) ;
  • 강지현 (씨제이제일제당(주) 식품연구소) ;
  • 이정희 (충남대학교 농업과학연구소) ;
  • 이기택 (충남대학교 식품공학과)
  • Published : 2009.04.30

Abstract

The acidolysis was performed to produce structured lipid with palm mid fraction (PMF) and stearic acid for 7, 24, and 36 hr at $70^{\circ}C$. The reaction was catalyzed by lipozyme TLIM (immobilized lipase from Thermonyces lanuginosa, amount of 10% and 20% by weight of total substrates) in the shaking water bath. The reaction conditions for maximum incorporation of stearic acid on the structured lipid were obtained when molar ratio of PMF and stearic acid was 1:2; concentration of lipozyme TLIM was 20wt%; reaction temperature was $70^{\circ}C$; and reaction time was 36 hr. After reaction under this condition, incorporation of stearic acid in the structured lipid was obtained up to 36.3% while the major components of triacylglycerol were 1,2-dipalmitoyl-3-stearoylglycerol (PPS, 28.19 area%), 1-palmitoyl-2-oleoyl-3-stearoylglycerol (POS/PSO, 20.70 area%) and 1-palmitoyl-2,3-distearoylglycerol (PSS, 18.13 area%). However, the fatty acid composition at the sn-2 position suggested that the positional specificity of lipozyme TLIM was not observed due to the acyl migration.

References

  1. Gunstone FD. 2001. Structured triacylglycerols. In Structured and modified lipids. Marcel Dekker Inc., New York, USA. p 209-239
  2. Soumanou MM, Bornscheuer UT, Schmid RD. 1998. Two-step enzymatic reaction for the synthesis of pure structured triacylglycerides. JAOCS 75: 703-710 https://doi.org/10.1007/s11746-998-0209-2
  3. Soumanou MM, Bornscheuer UT, Schmid RD. 1998. Synthesis of structured triglycerides by lipase catalysis. Fett-Lipid 100: 156-160 https://doi.org/10.1002/(SICI)1521-4133(19985)100:4/5<156::AID-LIPI156>3.0.CO;2-9
  4. Wang HX, Wu H, Ho CT, Weng XC. 2006. Cocoa butter equivalent from enzymatic interesterification of tea seed oil and fatty acid methyl esters. Food Chem 97: 661-665 https://doi.org/10.1016/j.foodchem.2005.04.029
  5. Park RK, Lee KT. 2003. Synthesis of structured lipids from corn oil and conjugated linoleic acid in the continuous type reactor. J Korean Soc Food Sci Nutr 32: 1200-1205 https://doi.org/10.3746/jkfn.2003.32.8.1200
  6. Shin JA, Lee KT. 2004. Lipase-catalyzed synthesis of structured lipids with capric and conjugated linoleic acid in a stirred-batch type reactor. J Korean Soc Food Sci Nutr 33: 1175-1179 https://doi.org/10.3746/jkfn.2004.33.7.1175
  7. Kristensen JB, Xu X, Mu H. 2005. Diacylglycerol synthesis by enzymatic glycerolysis screening of commercially available lipases. JAOCS 82: 329-334 https://doi.org/10.1007/s11746-005-1074-5
  8. Xu X, Skands ARH, Hoy CE, Mu H, Balchen S, Adler-Nissen J. 1998. Production of specific-structured lipids by enzymatic interesterification: Elucidation of acyl migration by response surface design. JAOCS 75: 1179-1198 https://doi.org/10.1007/s11746-998-0132-6
  9. Xu X. 2000. Enzymatic production of structured lipids: Process reactions and acyl migration. INFORM 11: 1121-1131
  10. Iwasaki Y, Yamane T. 2000. Enzymatic synthesis of structured lipids. J Molecul Catal B: Enzymatic 10: 129-140 https://doi.org/10.1016/S1381-1177(00)00120-X
  11. Schmid U, Bornscheuer UT, Soumanou MM, McNeill GP, Schmid RD. 1998. Optimization of the reaction conditions in the lipase-catalyzed synthesis of structured triglycerides. JAOCS 75: 1527-1531 https://doi.org/10.1007/s11746-998-0089-5
  12. Schmid U, Bornscheuer UT, Soumanou MM, McNeill GP, Schmid RD. 1999. Highly selective synthesis of 1,3-oleoyl-2-palmitoylglycerol by lipase catalysis. Biotechnol Bioeng 64: 678-684 https://doi.org/10.1002/(SICI)1097-0290(19990920)64:6<678::AID-BIT6>3.0.CO;2-9
  13. Gunstone FD. 2001. Cocoa butter and cocoa butter equivalents In Structured and modified lipids. Marcel Dekker Inc., New York, USA. p 401-422
  14. Bloober S, Adlercreutz P, Mattiasson B. 1990. Triglyceride interesterification by lipases. 1. Cocoa butter equivalents from a fraction of palm oil. JAOCS 67: 519-524 https://doi.org/10.1007/BF02540759
  15. 식품의약품안전청. 2007. 식품등 중 기준규격미설정 물질의 시험방법. 식품의약품안전청고시. 제2007-10호

Cited by

  1. Characterization of Low-Trans Solid Fat from Canola and Fully Hydrogenated Soybean Oil by Lipase-Catalyzed Interesterification Reaction vol.39, pp.9, 2010, https://doi.org/10.3746/jkfn.2010.39.9.1320