Characterization of the Acetolactate synthase (ALS) gene and Molecular Assay of Mutations Associated with Sulfonylurea Herbicide Resistance of Monochoria vaginalis

물달개비의 Acetolactate synthase (ALS) 유전자의 특성과 Sulfonylurea 제초제 저항성과 관련 돌연변의 분자생물학적 접근

  • 박태선 (국립식량과학원 벼맥류부 벼육종재배과) ;
  • 박홍규 (국립식량과학원 벼맥류부 벼육종재배과) ;
  • 구본일 (국립식량과학원 벼맥류부 벼육종재배과) ;
  • 김영두 (국립식량과학원 벼맥류부 벼육종재배과) ;
  • 고재권 (국립식량과학원 벼맥류부 벼육종재배과) ;
  • 이인용 (국립농업과학기술원 농약안정성부 농약평가과) ;
  • 박재읍 (국립농업과학기술원 농약안정성부 농약평가과)
  • Published : 2009.12.31

Abstract

This research aims to contribute the characterization of acetolactate synthase (Ec 4.1.3.18; ALS) and the resistance mechanism by sequence analysis of ALS gene of the sulfonylurea-resistant and -susceptible Monochoria vaginalis. The ALS gene was obtained from susceptible (S) and resistant (R) M. vaginalis to sulfonylurea herbicides (SUs). The 815 bp the fragment and the genomic DNA sequence coding for acetolactate synthase (ALS) of S and R biotypes of M. vaginalis were cloned and sequenced. Nineteen clones were divided greatly into 4 groups as result of sequencing. The first group was not difference to S type, the second group was amino acid of P197S which found point mutations causing substitution of serine for proline at amino acid 197, the third group was observed greatly other part of 6 places than group 1, and the fourth group appeared the intergrade of group 1 and 3. Therefore, it could be assumed what ALS gene of various types can be one plant. The peptide of the 13 amino acid Domain A region for ALS genes from R biotype of M. vaginalis differed from that of the S biotype by one base substitution at proline codon of Domain A. It could also be confirmed that point mutation of serine for proline at amino acid 197.

References

  1. Babczinski P., 2002. Discovery of the lead structure for propoxycarbazone-sodium(BAY 6561). Pflanzenschutz Nachrichten-Bayer 55(1), 5-14
  2. Bernasconi P., Woodworth A. R., Rosen B. A., Subramanian M. V. and Siehl D. L. 1995. A naturally-occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase, J. Biol. Chem. 270, 17381-7385 https://doi.org/10.1074/jbc.270.29.17381
  3. Boutsalis P., Karotam J. and Powels S. B., 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tourefortii, Testic. Sci. 55, 507-516
  4. Chang K.A. and Duggeby R. G. 1997. Expression, purification characterization and reconstitution of the large and small subuntits of yeast acetohydroxyacid synthase, Biochem. J. 327, 161-169
  5. Christopher P., Stone L. M., Ridger M. A. and Baker J., 2005. Multiple effects of a naturally occurring proline to theronine substitution within acetolactate synthase in two herbicideresistant populations of Lactuca serriola. Pestic. Biochem. Physiol. (in press)
  6. Diebold R. S., McNaughton K. E., Lee E. A. and Tardif F. J., 2003. Multiple resistance to imazethapyr and atrazine in Powell amaranth (Amaranthus powellii), Weed Sci. 51, 312-318 https://doi.org/10.1614/0043-1745(2003)051[0312:MRTIAA]2.0.CO;2
  7. Devine M. D. and Eberlein C. V., 1997. Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites, in: R.M. Roe, J. D. Burton, R. J. Kuhr (Eds.), Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, IOS Press, Amsterdam. 159-185
  8. Devine M. D. and Preston C., 2000. The molecular basis of herbicide resistance in: A.H. Cobb, R.C. Kirkwood (Eds.). Herbicides and their mechanisms of action. Sheffield Academic Press, Sheffield. 72-104
  9. Gerwick B. C. M., Subramamian M. V. and Loney-Gallant V. I., 1990. Mechanism of action of the 1, 2, 3,-triazoleo [1,5-$\alpha$] pyrimidines, Pestic. Sci. 29, 357-364 https://doi.org/10.1002/ps.2780290310
  10. Grula J. W., Hudspeth R. L., Hobbs S .L. and Anderson D. M., 1995. Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid gossypium hirsutum. Plant Mol Biol. 28(5), 837-46 https://doi.org/10.1007/BF00042069
  11. Guttieri M. J., Eberlein C. V., Mallory-Smith C. A., Thill D. C. and Hoffman D. L., 1992. DNA sequence variation in domain A of the acetolactate synthase genes of herbicide resistant and susceptible weed biotypes, Weed Sci. 40, 670-676
  12. Guttieri M. J., Eberlein C. V. and Thill D. C., 1995. Diverse mutations in the acetolactae synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotyes, Weed Sci. 43, 175-178
  13. Guttieri M. J., Eberlein C. V., Mallory-Smith C. A. and Thill D. C., 1996. Molecular genetics of target site resistance to acetolactate synthase inhibiting herbicides, in: T.M. Brown (Ed.), Molecular genetics and ecology of pesticide resistance, American Chemical Society, Washington, DC. 10-16
  14. Haughn G. W., Smith J., Mazur B. and Somerville C., 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides, Mol. Gen. Genet. 211, 266-271
  15. Heap I. 2003. International survey of herbicide resistant weeds. Annual Report Internet weedscience
  16. Keeler S J, Sanders P, Smith J. K. and Mazur B. J., 1993. Regulation of tobacco acetolactate synthase gene expression. Plant Physiol. 102(3), 1009-1018 https://doi.org/10.1104/pp.102.3.1009
  17. Kwon O. D., Koo S. J., Kim S. J., Lee D. J., Lee H. J., Park T .S., Kuk Y. I. and Guh J. O., 2002. Herbicide response and control of sulfonylurea resistant biotype of Monochoria vaginalis in paddy fields in chonnam province, Korea. Korea J. Weed Sci. 20, 46-52
  18. Kuk Y. I, Jung H .I, Kwon O. D, Lee D. J., Burgos N. R. and Guh J. O., 2003. Sulfonylurea herbicide-resistant Monochoria vaginalis in Korean rice culture. Pest Manag Sci. 59, 9:949-61 https://doi.org/10.1002/ps.722
  19. Lee K. Y., Townsend J., Tepperman J., Black M., Chui C. F., Mazur B., Dunsmuir P. and Bedbrook J., 1988. The molecular basis of sulfonylurea herbicide resistance in tobacco, EMBOJ 7, 1241-1248
  20. Mazur B. J. and Falco S. C., 1989. The development of herbicide resistant crops, Annu. Rev. Plant Mol. Biol. 40, 441-470 https://doi.org/10.1146/annurev.pp.40.060189.002301
  21. Ouellet T, Rutledge R. G. and Miki B. L., 1992. Members of the acetohydroxyacid synthase multigene family of Brassica napus have divergent patterns of expression. Plant J. 2(3), 321-330
  22. Ray T. B., 1984. Site of action of chlorsulfuron, Plant Physiol. 75, 827-832 https://doi.org/10.1104/pp.75.3.827
  23. Rutledge R. G., Quellet T., Hattori J. and Miki B.L., 1991. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol Gen Genet. 229(1), 31-40
  24. Saarum L .L. Cottermann J. C. and Thill D .C. 1994. Resistance to aceotlactate synthase-inhibiting Biochemistry, Lewis, Boca Raton, FL, 83-139
  25. Sathasiven K., Haughn G. W. and Murai N., 1991. Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var Columbia, Plant Physiol. 97, 1044-1050 https://doi.org/10.1104/pp.97.3.1044
  26. Shaner, D. L., Andrson P. C. and Stidham M. A., 1984. Imidazolinones: potent inhibitors of acethydroxyacid synthase, Plant Physiol. 76, 545-546 https://doi.org/10.1104/pp.76.2.545
  27. Singh B. K. and Shaner D. L., 1995. Biosynthesis of branched chain amino acids-from test tube to field, Plant cell 7, 935-944 https://doi.org/10.1105/tpc.7.7.935
  28. Singh B. K., 1999. Biosynthesis of valine, leucine and iosleucine, in: B.J Singh (Ed.), Plant Amino Acids: Biochemistry and Biotechnology, Marcel Dekkdr, New York, 227-247
  29. Takarashi S., Shigematsu S., Norita A., 1991. KIH-2031, A new herbicide for cotton, Proc.Brighton Crop Prt. Conf. 375-364
  30. Tranel P. J. and Wright T. R, 2002. Resistance of weeds to ALSinhibiting herbicides: What have we learned? Weed Sci. 50, 700-712 https://doi.org/10.1614/0043-1745(2002)050[0700:RROWTA]2.0.CO;2
  31. Umbarger H. E., 1978. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 47, 532-606. Review. No abstract available
  32. Wang G.X., Lin Y., Li W., Ito M. and Itoh K., 2004. A mutation confers Monochoria vaginalis resistance to sulfonyureas that target acetolactate synthase. Pestic. Biochem. Physiol. 80, 43-46 https://doi.org/10.1016/j.pestbp.2004.05.003
  33. Wiersma P. A., Schmiemann M. G., Condie J. A., Crosby W. L. and Maloney M. M., 1989. Isolation expression, and phylogenetic inheritance of an acetolactate synthase gene from Brassica mapus, Mol. Gen. Genet. 219, 413-420 https://doi.org/10.1007/BF00259614
  34. Woodworth A. R., Bernasconi P., Subramanian M. V. and Rosen B .A, 1996. A second naturally occurring point mutation confers broad based tolerance to acetolactate synthase inhibitors, Plant Physiol. 111, S105
  35. Woodworth A. R., Rosen B. A. and Bernasconi P., 1996. Broad range resistance to herbicides targeting aceohydroxyacid synthase (ALS) in a fileld isolate of Amaranthus sp. is conferred by a Try to Leu mutation in the ALS gene (Accession Number U55852) (PGR96-051), Plant. Physiol. 111, 1353 https://doi.org/10.1104/pp.111.4.1353
  36. Wright T. R., Bascomb N F., Sturner S. F. and Penner D., 1998.Biochemical mechanism and molecular basis for ALSinhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections Weed Sci. 46, 13-23