DOI QR코드

DOI QR Code

NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS FOR P* LAPS BASED ON LARGE UPDATES

  • Published : 2009.05.31

Abstract

In this paper we present new large-update primal-dual interior point algorithms for $P_*$ linear complementarity problems(LAPS) based on a class of kernel functions, ${\psi}(t)={\frac{t^{p+1}-1}{p+1}}+{\frac{1}{\sigma}}(e^{{\sigma}(1-t)}-1)$, p $\in$ [0, 1], ${\sigma}{\geq}1$. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*$ LAPS. We showed that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*$ LAPS have $O((1+2+\kappa)n^{{\frac{1}{p+1}}}lognlog{\frac{n}{\varepsilon}})$ complexity bound. When p = 1, we have $O((1+2\kappa)\sqrt{n}lognlog\frac{n}{\varepsilon})$ complexity which is so far the best known complexity for large-update methods.

Keywords

primal-dual interior point method;kernel function;complexity;polynomial algorithm;large-update;linear complementarity;path-following

References

  1. Y. Q. Bai, M. El Ghami, and C. Roos, A new efficient large-update primal-dual interiorpoint method based on a finite barrier, SIAM J. Optim. 13 (2002), no. 3, 766–782 https://doi.org/10.1137/S1052623401398132
  2. Y. Q. Bai, M. El Ghami, and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim. 15 (2004), no. 1, 101–128 https://doi.org/10.1137/S1052623403423114
  3. G. M. Cho, M. K. Kim, and Y. H. Lee, Complexity of large-update interior point algorithm for $P_*(\kappa)$ linear complementarity problems, Comput. Math. Appl. 53 (2007), no. 6, 948–960 https://doi.org/10.1016/j.camwa.2006.12.004
  4. M. El Ghami, I. Ivanov, J. B. M. Melissen, C. Roos, and T. Steihaug, A polynomial-time algorithm for linear optimization based on a new class of kernel functions, Journal of Computational and Applied Mathematics, DOI 10.1016/j.cam.2008.05.027 https://doi.org/10.1016/j.cam.2008.05.027
  5. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A primal-dual interior point algorithm for linear programming, Progress in mathematical programming (Pacific Grove, CA, 1987), 29–47, Springer, New York, 1989
  6. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science, 538. Springer-Verlag, Berlin, 1991
  7. M. Kojima, S. Mizuno, and A. Yoshise, An O($\sqrt{n}$L) iteration potential reduction algorithm for linear complementarity problems, Math. Programming 50 (1991), no. 3, (Ser. A), 331–342 https://doi.org/10.1007/BF01594942
  8. N. Megiddo, Pathways to the optimal set in linear programming, Progress in mathematical programming (Pacific Grove, CA, 1987), 131–158, Springer, New York, 1989
  9. J. Peng, C. Roos, and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Math. Program. 93 (2002), no. 1, Ser. A, 129–171 https://doi.org/10.1007/s101070200296
  10. C. Roos, T. Terlaky, and J. Ph. Vial, Theory and Algorithms for Linear Optimization, An interior point approach. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Ltd., Chichester, 1997
  11. U. Schafer, A linear complementarity problem with a P-matrix, SIAM Rev. 46 (2004), no. 2, 189–201 https://doi.org/10.1137/S0036144502420083
  12. T. Illes and M. Nagy, A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems, European J. Oper. Res. 181 (2007), no. 3, 1097–1111 https://doi.org/10.1016/j.ejor.2005.08.031
  13. M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Math. Programming 44 (1989), no. 1, (Ser. A), 1–26 https://doi.org/10.1007/BF01587074
  14. J. Miao, A quadratically convergent O(($\kappa + 1)\sqrt{n}$L)-iteration algorithm for the $P_*(\kappa)$-matrix linear complementarity problem, Math. Programming 69 (1995), no. 3, Ser. A, 355–368 https://doi.org/10.1007/BF01585565