DOI QR코드

DOI QR Code

η-PARALLEL CONTACT 3-MANIFOLDS

  • Published : 2009.05.31

Abstract

In this paper, we give a classification of contact 3-manifolds whose Ricci tensors are $\eta$-parallel.

Keywords

contact 3-manifolds;$\eta$-parallel Ricci tensors;critical metrics

References

  1. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, 2002
  2. D. E. Blair, Critical associated metrics on contact manifolds, J. Austral. Math. Soc. Ser. A 37 (1984), no. 1, 82–88 https://doi.org/10.1017/S1446788700021753
  3. D. E. Blair, When is the tangent sphere bundle locally symmetric?, Geometry and topology, 15–30, World Sci. Publishing, Singapore, 1989
  4. D. E. Blair, T. Koufogiorgos, and R. Sharma, A classification of 3-dimensional contact metric manifolds with Q$\phi = \phi$Q, Kodai Math. J. 13 (1990), no. 3, 391–401 https://doi.org/10.2996/kmj/1138039284
  5. D. E. Blair and L. Vanhecke, Symmetries and A-symmetric spaces, Tohoku Math. J. (2) 39 (1987), no. 3, 373–383
  6. E. Boeckx and J. T. Cho, Locally symmetric contact metric manifolds, Monatsh. Math. 148 (2006), no. 4, 269–281 https://doi.org/10.1007/s00605-005-0366-4
  7. G. Calvaruso, D. Perrone, and L. Vanhecke, Homogeneity on three-dimensional contact metric manifolds, Israel J. Math. 114 (1999), 301–321 https://doi.org/10.1007/BF02785585
  8. F. Gouli-Andreou and P. J. Xenos, On 3-dimensional contact metric manifolds with $\nabla_{\varepsilon \tau}$= 0, J. Geom. 62 (1998), no. 1-2, 154–165 https://doi.org/10.1007/BF01237607
  9. J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293–329 https://doi.org/10.1016/S0001-8708(76)80002-3
  10. D. Perrone, Torsion and critical metrics on contact three-manifolds, Kodai Math. J. 13 (1990), no. 1, 88–100 https://doi.org/10.2996/kmj/1138039163
  11. D. Perrone, Weakly $\phi$-symmetric contact metric spaces, Balkan J. Geom. Appl. 7 (2002), no. 2, 67–77
  12. T. Takahashi, Sasakian $\phi$-symmetric spaces, Tohoku Math. J. (2) 29 (1977), no. 1, 91–113
  13. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349–379
  14. D. E. Blair and R. Sharma, Three-dimensional locally symmetric contact metric manifolds, Boll. Un. Mat. Ital. A (7) 4 (1990), no. 3, 385–390
  15. E. Boeckx, P. Bueken, and L. Vanhecke, A-symmetric contact metric spaces, Glasg. Math. J. 41 (1999), no. 3, 409–416
  16. S. S. Chern and R. S. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, With an appendix by Alan Weinstein. Lecture Notes in Math., 1111, Workshop Bonn 1984 (Bonn, 1984), 279–308, Springer, Berlin, 1985 https://doi.org/10.1007/BFb0084596