DOI QR코드

DOI QR Code

Isolation and Purification of Decursin and Decursinol Angelate in Angelica gigas Nakai

참당귀(Angelica gigas Nakai) 중 Decursin 및 Decursinol Angelate의 분리 및 정제

  • 김강민 (인제대학교 식의약생명공학과) ;
  • 정재연 (인제대학교 식의약생명공학과) ;
  • 황성우 (인제대학교 식의약생명공학과) ;
  • 김묘정 (인제대학교 식의약생명공학과) ;
  • 강재선 (경성대학교 약학과)
  • Published : 2009.05.29

Abstract

This paper is intended as an investigation of the method of extraction and the analysis by high-performance liquid chromatography mass spectroscopy of decursin and decursinol angelate in the dried root of Angelica gigas Nakai. The extracted decursin and decursinol angelate were the purity of >95% using 60% ethanol at $-20^{\circ}C$ for 12 hours by HPLC analysis. Decursin and decursinol angelate were efficiently isolated using recycling HPLC. The purity of isolated decursin and decursinol angelate was identified as 99.97 and 99.40% by HPLC analysis, respectively. The molecular weights of Decursin and decursinol angelate were also identified as m/z=329 ($[M+H]^+$) and m/z=351 ($[M+Na]^+$) by mass spectroscopy.

References

  1. Ahn MJ, Lee MK, Kim YC, Sung SH. 2008. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry. J Pharmaceut Biomed 46: 258-266 https://doi.org/10.1016/j.jpba.2007.09.020
  2. Yook CS. 1990. Coloured medicinal plants of Korea. Academy Book Co., Seoul. p 390
  3. Lee SH, Lee YS, Jung SH, Shin KH, Kim BK, Kang SS. 2003. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch Pharm Res 26: 727-730 https://doi.org/10.1007/BF02976682
  4. Lee SH, Shin DS, Kim JS, Oh KB, Kang SS. 2003. Antibacterial courmins from Angelica gigas roots. Arch Pharm Res 26: 449-452 https://doi.org/10.1007/BF02976860
  5. Yim DS, Singh RP, Agarwal C, Lee SY, Chi HJ. 2005. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res 65: 1035-1044
  6. Kang SY, Lee KY, Sung SH, Park MJ, Kim YC. 2001. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase structure-activity relationships. J Nat Prod 64: 683-685 https://doi.org/10.1021/np000441w
  7. Ahn KS, Sim WS, Kim IH. 1996. Decursin: a cytotoxic agent and protein kinase C activator from the root of Angelica gigas. Planta Med 62: 7-9 https://doi.org/10.1055/s-2006-957785
  8. Bae EA, Han MJ, Kim NJ, Kim DH. 1998. Anti-Helicobacter pylori activity of herbal medicines. Biol Pharm Bull 21: 990-992 https://doi.org/10.1248/bpb.21.990
  9. Ryu KS, Yook CS. 1967. Studies on the coumarins of the root of Angelica gigas Nakai. Yakhakhoeji 11: 22-26
  10. Kim HH, Ahn KS, Han H, Choung SY, Choi SY, Kim IH. 2005. Decursin and PDBu: two PKC activators distinctively acting in the megakaryocytic differentiation of K562 human erythroleukemia cells. Leuk Res 29: 1407-1413 https://doi.org/10.1016/j.leukres.2005.05.001
  11. Yim D, Singh RP, Agarwal C, Lee S, Chi H, Agarwal R. 2005. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res 65: 1035-1044
  12. Lee JH, Choi YS, Kim JH, Jeong HG, Kim DH, Yun MY, Kim JS, Lee SH, Cho SH, Shen GN, Kim EG, Jin WY, Song GY. 2006. A mass preparation method of (+)-decursinol from the roots of Angelica gigas. Yakhakhoeji 50: 172-176
  13. Park KW, Choi SR, Shon MY, Jeong IY, Kang KS, Lee ST, Shim KH, Seo KI. 2007. Cytotoxic effects of decursin from Angelica gigas Nakai in human cancer cells. J Korean Soc Food Sci Nutr 36: 1385-1390 https://doi.org/10.3746/jkfn.2007.36.11.1385
  14. Lim JD, Kim IH, Kim HH, Ahn KS, Han HG. 2001. Enantioselective synthesis of decursinol angelate and decursin. Tetrahedron Lett 42: 4001-4003 https://doi.org/10.1016/S0040-4039(01)00642-6

Cited by

  1. Decursin attenuates hepatic fibrogenesis through interrupting TGF-beta-mediated NAD(P)H oxidase activation and Smad signaling in vivo and in vitro vol.108, pp.2, 2014, https://doi.org/10.1016/j.lfs.2014.05.012
  2. The Improvement Effect of Fermented Angelica gigas Nakai Powder Against Orotic Acid-induced Fatty Liver in Rats vol.24, pp.4, 2014, https://doi.org/10.5352/JLS.2014.24.4.411
  3. Physiochemical Characteristics of Extruded Angelica gigas Nakai Depending on the Extrusion Processing Parameter vol.22, pp.5, 2014, https://doi.org/10.7783/KJMCS.2014.22.5.349
  4. Biological Activities of Extracts from Flowers of Angelica gigas Nakai vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1079
  5. Decursin Isolated fromAngelica gigasNakai Rescues PC12 Cells from Amyloidβ-Protein-Induced Neurotoxicity through Nrf2-Mediated Upregulation of Heme Oxygenase-1: Potential Roles of MAPK vol.2013, 2013, https://doi.org/10.1155/2013/467245
  6. Bioactive Materials and Biological Activity in the Extracts of Leaf, Stem Mixture and Root from Angelica gigas Nakai vol.20, pp.5, 2010, https://doi.org/10.5352/JLS.2010.20.5.750
  7. Anti-inflammatory Activities of Coumarins Isolated from Angelica gigas Nakai on LPS-stimulated RAW 264.7 Cells vol.14, pp.3, 2009, https://doi.org/10.3746/jfn.2009.14.3.179
  8. Protective Effects of Decursin and Decursinol Angelate against Amyloid β-Protein-Induced Oxidative Stress in the PC12 Cell Line: The Role of Nrf2 and Antioxidant Enzymes vol.75, pp.3, 2011, https://doi.org/10.1271/bbb.100606
  9. Ingredients Analysis and Biological Activity of Fermented Angelica gigas Nakai by Mold vol.20, pp.9, 2010, https://doi.org/10.5352/JLS.2010.20.9.1385
  10. Recovery from the Two-generation Reproductive Toxicity in Sprague-Dawley Rats by Treatment with Decursin and Decursinol Angelate vol.25, pp.7, 2015, https://doi.org/10.5352/JLS.2015.25.7.765
  11. Antioxidant and ACE Inhibitory Activity of Cultivated and Wild Angelica gigas Nakai Extracts Prepared Using Different Extraction Conditions vol.19, pp.4, 2014, https://doi.org/10.3746/pnf.2014.19.4.274
  12. Effects of Extraction Methods of Medicinal Plants on Human Growth of Neuroblastoma SK-N-SH Cells vol.21, pp.8, 2011, https://doi.org/10.5352/JLS.2011.21.8.1190
  13. Decursin and decursinol angelate affect spermatogenesis in the adult rat at oral administration vol.10, pp.1, 2014, https://doi.org/10.1007/s13273-014-0010-2
  14. Decursin attenuates the amyloid-β-induced inflammatory response in PC12 cells via MAPK and nuclear factor-κB pathway vol.32, pp.2, 2017, https://doi.org/10.1002/ptr.5962