DOI QR코드

DOI QR Code

Analysis for Fracture Characteristics of Porous Materials by using Cohesive Zone Models

응집영역모델을 이용한 다공질 재료의 파괴 거동 연구

  • 최승현 (포항공과대학교 대학원 기계공학과) ;
  • 하상렬 (포항공과대학교 대학원 기계공학과) ;
  • 김기태 (포항공과대학원 기계공학과)
  • Published : 2009.06.01

Abstract

The effect of porosity on the crack propagation is studied by using the cohesive zone model. Standard mode I fracture test were done by using compact tension specimens with various porosities. Load-load line displacement curves and ${\delta}_5$-crack resistance curves for various porosities were obtained from experiments. The cohesive zone model proposed by Xu and Needleman was employed to describe the crack propagation in porous media, and the Gurson model is used for constitutive relation of porous materials. These models were implemented into user subroutines of a finite element program ABAQUS. The fracture mode changes from ductile fracture to brittle fracture as the porosity increases. Numerical calculations agree well with experimental results.

Keywords

Cohesive Zone Model;Crack Propagation;Mode I Fracture;Porous Material

References

  1. Leedy, K.D. and Stubbins, J.F., 2001, 'Copper Alloy-Stainless Steel Bonded Laminates for Fusion Reactor Application : Tensile strength and Microstructure,' Mat. Sci. Eng., A 297, pp.10-18 https://doi.org/10.1016/S0921-5093(00)01273-9
  2. Anderson, T.L., 1995, 'Fracture Mechanics : Fundamentals and Applications,' 2nd ed., CRC Press, Inc
  3. Barenblatt, G.I., 1962, 'Mathematical Theory of Equilibrium Crack in Brittle Fracture,' Advance in applied mechanics, Vol. 7, pp. 55-129 https://doi.org/10.1016/S0065-2156(08)70121-2
  4. Dugdale, D.S., 1960, 'Yielding of Steel Sheets Containing Slits,' J. Mech. Phys. Solids, Vol. 8, pp. 100-108 https://doi.org/10.1016/0022-5096(60)90013-2
  5. Xu, X.-P. and Needleman, A., 1994, 'Numerical Simulations of Fast Crack Growth in Brittle solids,' J. Mech. Phys. Solids, Vol. 42, No. 9, pp. 1397-1434 https://doi.org/10.1016/0022-5096(94)90003-5
  6. Needleman, A., 'Numerical Modeling of Crack Growth Under Dynamic Loading Conditions,' Comp. Mech., Vol. 19, pp. 463-469 https://doi.org/10.1007/s004660050194
  7. Geubelle, P.H., 1995, 'Finite Deformation Effects in Homogeneous and Interfacial Fracture,' Int. J. Solids Struc., Vol. 36, pp. 1003-1016 https://doi.org/10.1016/0020-7683(94)00174-U
  8. Chandra, N., Li, H., shet, C. and Ghonem, H., 2002, 'Some Issues in the Application of Cohesive Zone Models for Metal-Ceramic Interfaces,' Int. J. Solids Struc., Vol. 39, pp. 2827-2855 https://doi.org/10.1016/S0020-7683(02)00149-X
  9. Gurson, A. L., 1977, 'Continuum Theory of Ductile Rupture by Void Nucleation and Growth : Part 1-Yield Criteria and Flow Rules for Porous Media,' J. Eng. Mat. Tech, Transac. ASME Vol. 99, Ser H (1), pp. 2-15 https://doi.org/10.1115/1.3443401
  10. Kim, K.T. and Cho, Y.H., 1992, 'A Temparature and Strain Rate Dependent Strain Hardening Law,' Int. J. Pres. Ves. & Piping, Vol. 49, pp. 327-337 https://doi.org/10.1016/0308-0161(92)90120-5
  11. Paulino, G.H. and Zhang, Z., 2005, 'Cohesive Zone Modeling of Dynamic Crack Propagation in Functionally Graded Materials,' 5th GRACM Int. Congress on Comp. Mech., Limassol, 29 June-1 July, 2005
  12. ASTM E 399-83, 1997, 'Standard Test Method for Fracture Toughness of Metallic Materials,' Americal Society for Testing and Materials
  13. Wang, J.C., 1984, 'Young's Modulus of Porous Materials; Part 1-Theoretical Derivation of Modulus–Porosity Correlation,' J. Mat. Sci., Vol. 19, pp. 801-808 https://doi.org/10.1007/BF00540451
  14. Carnavas, P.C. and Page, N.W., 1998, 'Elastic Properties of Compacted Metal Powders,' J. Mat. Sci., Vol. 33, pp. 4647-4655 https://doi.org/10.1023/A:1004445527430
  15. Winter, A.N., Corff, B.A., Reimanis, I.E. and Rabin, B.H., 2000, 'Fabrication of graded Nickel-Alumina Composites with a Thermal-Behavior-Matching Process,' J. Am. Ceramic. Soc., Vol. 9, pp. 2147-2154 https://doi.org/10.1111/j.1151-2916.2000.tb01528.x
  16. Siegmuns, T, and Needleman, A., 1997, 'A Numerical Study of Dynamic Crack Growth in Elastic-Viscoplastic Solids,' Int. J. Solids Struc., Vol.34, pp.769-787 https://doi.org/10.1016/S0020-7683(96)00062-5
  17. Camacho, G.T. and Ortiz, M., 1996, 'Computational Modeling of Impact Damage in Brittle Materials,' Int. J. Solids Struc., Vol. 33, pp.2899-2938 https://doi.org/10.1016/0020-7683(95)00255-3
  18. Siegmund, T. and Brocks, W., 2000, 'A Numerical Study on Correlation Between the Work of Separation and the Dissipation rate in Ductile Fracture,' Eng. Frac. Mech., Vol. 67, pp. 137-154 https://doi.org/10.1016/S0013-7944(00)00054-0
  19. Li, W., Siegmund, T., 2002, 'An Analysis of Crack Growth on Thin Sheet met via a Cohesive Zone Model,' Eng. Frac. Mech., Vol. 69, Issue 18, pp. 2073-2093 https://doi.org/10.1016/S0013-7944(02)00013-9