Semi-interpenetrated Polymer Network of Sulfonated Poly(Styrene-Divinylbenzene-Acrylonitrile) based on PVC Film for Polymer Electrolyte Membranes

  • Yun, Sung-Hyun (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Woo, Jung-Je (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Seo, Seok-Jun (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Park, Jung-Woo (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Oh, Se-Hun (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Moon, Seung-Hyeon (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • Published : 2009.12.31

Abstract

The sulfonated poly(styrene-divinylbenzene-acrylonitrile) (ST-DVB-AN) composite polymer electrolyte membrane based on the original PVC film was successfully synthesized to improve oxidative stability using semi-interpenetrated polymer network (semi-IPN). Weight gain ratio after copolymerization was enhanced by the DVB and AN contents, and the sulfonated membranes were characterized in terms of proton conductivity (k), ion exchange capacity (IEC), and water uptake ($W_U$). The effect of DVB content and AN addition were thoroughly investigated by comparing the resulted properties including oxidative stability. The obtained ST-DVB-AN composited semi-IPN membranes showed relatively high proton conductivity and IEC compared with Nafion117, and greatly improved oxidative stability of the synthesized membrane was obtained. This study demonstrated that a semi-interpenetrated sulfonated ST-DVB-AN composited membrane reinforced by PVC polymer network is a promising candidate as an inexpensive polymer electrolyte membrane for fuel cell applications.

References

  1. C. Bossi, A. D. Corno, M. Scagliotti, and C. Valli, 'Characterisation of a 3 kW PEFC power system coupled with a metal hydride H2 storage', J. Power Sources, 171, 122 (2007) https://doi.org/10.1016/j.jpowsour.2006.11.006
  2. H.-S. Chu, F. Tsau, Y.-Y. Yan, K.-L. Hsueh, and F.-L. Chen, 'The development of a small PEMFC combined heat and power system', J. Power Sources, 176, 499 (2008) https://doi.org/10.1016/j.jpowsour.2007.08.072
  3. N. Wan and G. Wang, 'An integrated composite membrane electrode assembly (ICMEA) and its application in small H2/air fuel cells', J. Power Sources, 159, 951 (2006) https://doi.org/10.1016/j.jpowsour.2005.11.067
  4. S. J. C. Cleghorn, D. K. Mayfield, D. A. Moore, J. C. Moore, G. Rusch, T. W. Sherman, N. T. Sisofo, and U. Beuscher, 'A polymer electrolyte fuel cell life test: 3 years of continuous operation', J. Power Sources, 158, 446 (2006) https://doi.org/10.1016/j.jpowsour.2005.09.062
  5. R. Souzy and B. Ameduri, 'Functional fluoropolymers for fuel cell membranes', Prog. Polym. Sci., 30, 644 (2005). https://doi.org/10.1016/j.progpolymsci.2005.03.004
  6. B.-J. Chang, D. J. Kim, J. H. Kim, S.-B. Lee, and H. J. Joo, 'Sulfonated poly(fluorene-co-sulfone)ether membranes containing perfluorocyclobutane groups for fuel cell applications', J. Membr. Sci., 325, 989 (2008) https://doi.org/10.1016/j.memsci.2008.09.036
  7. M. Rikukawa and K. Sanui, 'Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers', Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  8. T. A. Sherazi, S. Ahmad, M. A. Kashmiri, D. S. Kim, and M. D. Guiver, 'Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder for polymer electrolyte fuel cell application II. Sulfonation and characterization', J. Membr. Sci., 333, 59 (2009) https://doi.org/10.1016/j.memsci.2009.01.052
  9. R.-Q. Fu, J.-J. Woo, S.-J. Seo, J.-S. Lee, and S.-H. Moon, 'Covalent organic/inorganic hybrid protonconductive membrane with semi-interpenetrating polymer network: Preparation and characterizations', J. Power Sources, 179, 458 (2008) https://doi.org/10.1016/j.jpowsour.2007.12.118
  10. R.-Q. Fu, J.-J. Woo, S.-J. Seo, J.-S. Lee, and S.-H. Moon, 'Sulfonated polystyrene/polyvinyl chloride composite membranes for PEMFC applications', J. Membr. Sci., 309, 156 (2008). https://doi.org/10.1016/j.memsci.2007.10.013
  11. S. Feng, Y. Shang, X. Xie, Y. Wang, and J. Xu, 'Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC application', J. Membr. Sci., 335, 13 (2009) https://doi.org/10.1016/j.memsci.2009.02.034
  12. J. Jaafar, A. F. Ismail, and T. Matsuura, 'Preparation and barrier properties of SPEEK/Cloisite $15A^{\circledR}$/ TAP nanocomposite membrane for DMFC application', J. Membr. Sci., 345, 119 (2009) https://doi.org/10.1016/j.memsci.2009.08.035
  13. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, 'High temperature proton exchange membranes based on polybenzimidazoles for fuel cells', Prog. Polym. Sci., 34, 449 (2009) https://doi.org/10.1016/j.progpolymsci.2008.12.003
  14. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-i. Kimijima, and N. Iwashita, 'Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation', Chem. Rev., 107, 3904 (2007) https://doi.org/10.1021/cr050182l
  15. Y. Fu, A. Manthiram, and M. D. Guiver, 'Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells', Electrochem. Commun., 8, 1386 (2006) https://doi.org/10.1016/j.elecom.2006.06.018
  16. A. Mokrini, M. A. Huneault, Z. Shi, Z. Xie, and S. Holdcroft, 'Non-fluorinated proton-exchange membranes based on melt extruded SEBS/HDPE blends', J. Membr. Sci., 325, 749 (2008) https://doi.org/10.1016/j.memsci.2008.08.051
  17. T. Yamaki, M. Asano, Y. Maekawa, Y. Morita, T. Suwa, J. Chen, N. Tsubokawa, K. Kobayashi, H. Kubota, and M. Yoshida, 'Radiation grafting of styrene into crosslinked PTEE films and subsequent sulfonation for fuel cell applications', Radiat. Phys. Chem., 67, 403 (2003) https://doi.org/10.1016/S0969-806X(03)00075-6
  18. B. N. Kim, D. H. Lee, and D. H. Han, 'Characteristics of Fuel Cell Membranes Prepared by EB Radiation Grafting onto FEP with Styrene Derivatives, Styrene and 2-Methylstyrene', J. Electrochem. Soc., 155, B680 (2008) https://doi.org/10.1149/1.2909867
  19. J.-J. Woo, S.-J. Seo, S.-H. Yun, and S.-H. Moon, 'Improvement of oxidative stability for non-fluorinated membranes prepared by substituted styrene monomers', Membrane Journal, 17, 294 (2007)
  20. L. Wu, C. Huang, J.-J. Woo, D. Wu, S.-H. Yun, S.-J. Seo, T. Xu, and S.-H. Moon, 'Hydrogen bonding: A channel for protons to transfer through acid-base pairs', J. Phys. Chem. B, 113, 12265 (2009) https://doi.org/10.1021/jp905778t