Bioprocess Development for Production of Alkaline Protease by Bacillus pseudofirmus Mn6 Through Statistical Experimental Designs

  • Abdel-Fattah, Y.R. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications) ;
  • El-Enshasy, H.A. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications) ;
  • Soliman, N.A. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications) ;
  • El-Gendi, H. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications)
  • Published : 2009.04.30


A sequential optimization strategy, based on statistical experimental designs, is employed to enhance the production of alkaline protease by a Bacillus pseudofirmus local isolate. To screen the bioprocess parameters significantly influencing the alkaline protease activity, a 2-level Plackett-Burman design was applied. Among 15 variables tested, the pH, peptone, and incubation time were selected based on their high positive significant effect on the protease activity. A near-optimum medium formulation was then obtained that increased the protease yield by more than 5-fold. Thereafter, the response surface methodology(RSM) was adopted to acquire the best process conditions among the selected variables, where a 3-level Box-Behnken design was utilized to create a polynomial quadratic model correlating the relationship between the three variables and the protease activity. The optimal combination of the major medium constituents for alkaline protease production, evaluated using the nonlinear optimization algorithm of EXCEL-Solver, was as follows: pH of 9.5, 2% peptone, and incubation time of 60 h. The predicted optimum alkaline protease activity was 3,213 U/ml/min, which was 6.4 times the activity with the basal medium.



  1. Abdel-Fattah, Y .R. and Z. A. Olama. 2002. L-Asparaginase produ3.ction by Pseudomonas aeruginosa in solid-state culture: Evaluation and optimization of culture conditions using factorial designs. Proc. Biochem. 38: 115-122
  2. Abdel-Fattah, Y. R., H. M. Saeed, Y. M. Gohar, and M. A. El-Baz. 2005. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Proc. Biochem. 40: 1707-1714
  3. Anson, M. L. 1938. Estimation of pepsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22: 79-89
  4. Anwar, A. and M. Saleemuddin. 1998. Alkaline proteases: A review. Biores. Technol. 64: 175-183
  5. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidam, J.A. Smith, and K. Struhl, K. (eds). 1999. Short Protocols in Molecular Biology. John Willey and Sons, Inc. NY
  6. Beg, Q. K., V. Sahai, and R. Gupta. 2003. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Proc. Biochem. 39: 203-209
  7. Beg, Q.K., R. K. Saxena, and R. Gupta. 2002. De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed batch operations. Process Biochem. 37: 1103-1109
  8. Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475
  9. Chang, Y.-N., J.-C. Huang, C.-C. Lee, I.-L. Shih, and Y.-M. Treng. 2002. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus rubber. Enz. Microbial Technol. 30: 889-894
  10. Denizci, A. A., D. Kazan, E. C. A. Abeln, and A. Erarslan. 2004. A newly isolated Bacillus clausii GMBAE 42: An alkaline protease producer capable to grow under highly alkaline conditions. J. Appl. Microbiol. 96: 320-327
  11. El-Helow, E. R., Y. R. Abdel-Fattah, K. M. Ghanem, and E. A. Mohamad. 2000. Application of the response surface methodology for optimizing the activity of an aprE-driven gene expression system in Bacillus subtilis. Appl. Microbiol. Biotechnol. 54: 515- 520
  12. Falahatpishe, H., M. Jalali, N. Badami, N. Mardani, and K. Khosravi-Darani. 2007. Production and purification of a protease from an alkalophilic Bacillus sp. 2-5 strain isolated from soil. Iranian J. Biotechnol. 5: 110-113
  13. Francis, F., A. Sabu, K.-M. Nampoothiri, S. Ramachandran, S. Ghosh, G. Szakacs, and A. Pandey. 2003. Use of response surface methodology for optimizing process parameters for the production of $\alpha$-amylase by Aspergillus oryzae. Biochem. Eng. J. 15: 107-115
  14. Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60: 381-395
  15. Haaland, P. D. 1989. Statistical problem solving, pp. 1-18. In P. D. Haaland (ed.). Experimental Design in Biotechnology. Marcel Dekker, Inc., New York
  16. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98
  17. Hameed, A., T. Keshavarz, and C. S. Evans. 1999. Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of Bacillus subtilis K2, for use in leather processing. J. Chem. Technol. Biotechnol. 74: 5-8<5::AID-JCTB979>3.0.CO;2-T
  18. Horikoshi, K. 1971. Production of alkaline enzymes by alkalophilic microorganisms. Part II. Alkaline amylase produced by Bacillus No. A-40-2. Agric. Biol. Chem. 35: 1783-1791
  19. Horikoshi, K. 2006. Alkaliphiles, Genetic Properties and Applications of Enzymes, p. 4. Kodansha Ltd., Tokyo
  20. Johnvesly, B. and G. R. Naik. 2001. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in chemically defined medium. Proc. Biochem. 37: 139-144
  21. Joo, H.-S., C. G. Kumar, G.-C. Park, S. R. Paik, and C. S. Chang. 2003. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some ome properties. J. Appl. Microbiol. 95: 267-272
  22. Kojima, M., M. Kanai, M. Tominaga, S. Kitazume, A. Inoue, and K. Horikoshi. 2006. Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10: 229-235
  23. Kole, M. M., I. Draper, and D. F. Gerson. 1988. Production of protease by Bacillus subtilis using simultaneous control of glucose and ammonium concentrations. J. Chem. Technol. Biotechnol. 41: 197-206
  24. Kumar, C. G. and H. Takagi. 1999. Microbial alkaline protease: From a bioindustrial view. Biotechnol. Adv. 17: 561-594
  25. Mehta, V. J., J. T. Thumar, and S. P. Singh. 2006. Production of alkaline protease from an alkaliphilic actinomycete. Biores. Technol. 97: 1650-1654
  26. Nehete, P. N., V. D. Shah, and R. M. Kothari. 1985. Profiles of alkaline protease production as a function of composition of the slant, age, transfer and isolate number and physiological state of culture. Biotechnol. Lett. 7: 413-418
  27. Nobuaki, F. and Y. Kazuhiko. 1987. Decomposition of gelatin layers on x-ray films by the alkaline protease from Bacillus sp. Hakkokogaku Kaishi 65: 531-534
  28. Page, R. D. M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12: 357-358
  29. Patel, R., M. Dodia, and S.-P. Singh. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Proc. Biochem. 40: 3569-3575
  30. Patel, R., M. Dodia, and S. P. Singh. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem. 40: 3569-3575
  31. Patel, R. K., M. S. Dodia, R. H. Joshi, and S. P. Singh. 2006. Production of extracellular halo-alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. isolated from seawater in Western India. World J. Microbiol. Biotechnol. 22: 375-382
  32. Plackett, R. L. and J. P. Burman. 1946. The design of optimum multi-factorial experiments. Biometrika 33: 305-325
  33. Puri, S., Q.-K. Beg, and R. Gupta. 2002. Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr. Microbiol. 44: 286-290
  34. Rao, M. B., A. M. Tankasle, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbial Mol. Biol. Rev. 62: 597-635
  35. Reddy, L. V. A., Y.-J. Wee, J.-S. Yun, and H.-W. Ryu. 2008. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Biores. Technol. 99: 2242-2249
  36. Shikha, S. A. and N.-S. Darmwal. 2007. Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Biores. Technol. 98: 881-885
  37. Sinha, N. and T. Satyanarayana. 1991. Alkaline protease production by thermophilic B. licheniformis. Indian J. Microbiol. 31: 425-430
  38. Stowe, R. A. and R. P. Mayer. 1966. Efficient screening of process variables. Ind. Eng. Chem. 58: 36-40
  39. Tari, C., H. Genckal, and F. Tokatli. 2006. Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated Bacillus sp. L21. Proc. Biochem. 41: 659-665
  40. Varela, H., M. D. Ferrari, L. Belobradjic, R. Weyrauch, and M. L. Loperena. 1996. Effect of medium composition on the production by a new Bacillus subtilis isolate of protease with promising unhairing activity. World J. Microbiol. Biotechnol. 12: 643-645
  41. Vidyasagar, M., S.-B. Prakash, and K. Sreeramulu. 2006. Optimization of culture condition for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeomericum sp. TSS101. J. Lett. Appl. Microbiol. 43: 385-391