The One-step Mobile Shopping using Multipurpose Visual Language System

Young-Jong Kim*
*Department of Digital Service, Hyejeon College

Abstract In this paper designed One-step mobile shopping system using Multipurpose Visual Language System (MVLS). MVLS is based on braille system, and list this to a square color box. This is can accomplish convenience of use and encipherment of fundamental personal information. Also, this system has advantage to fast communication speed because that has little size packets. Planed system does and fit this in shopping, to graft together mobile-phone that the such MVLS and most of internal adult are possessing. User can more fast finish shopping just photographing and press the button that show on TV or PC monitor and printed materials etc. by camera of mobile phone.

Key Words: One-Step Mobile Shopping

1. 서론

인터넷과 핸드폰 및 휴대용 기기의 발달은 현대인들에게 편리하고도 다양한 서비스를 받을 수 있는 환경을 제공하고 있다. 사용자들은 이에 부응하여 보다 다양하면서도 손쉽게 원하는 정보에 접근하여 그 결과를 얻을 수 있는 환경을 요구하고 있다.

또한, 최근 인터넷 온라인 쇼핑이나 TV 쇼핑을 통해 이루어지는 이른바 사이버쇼핑의 규모는 가히 폭발적으로 증가하여 통계청의 자료에 의하여 표 1과 그림 1에 나타낸 바와 같이 2001년 3조 3천여억원 규모에서 2008 년 18조 1천여억원으로 늘어났으며, 이러한 증가세는 더욱 가속화되고 있다.[1]

<table>
<thead>
<tr>
<th>년도</th>
<th>전자상거래 및 사이버쇼핑 동향, 통계청 (단위 : 식약원)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>주요상품별</td>
<td>운영형분류</td>
</tr>
<tr>
<td></td>
<td>전문품</td>
<td>종합품</td>
</tr>
<tr>
<td>2001</td>
<td>1,087</td>
<td>2,260</td>
</tr>
<tr>
<td>2002</td>
<td>1,641</td>
<td>4,389</td>
</tr>
<tr>
<td>2003</td>
<td>1,947</td>
<td>5,108</td>
</tr>
<tr>
<td>2004</td>
<td>2,147</td>
<td>5,621</td>
</tr>
<tr>
<td>2005</td>
<td>3,261</td>
<td>7,415</td>
</tr>
<tr>
<td>2006</td>
<td>3,889</td>
<td>9,571</td>
</tr>
<tr>
<td>2007</td>
<td>4,644</td>
<td>11,122</td>
</tr>
<tr>
<td>2008</td>
<td>5,181</td>
<td>12,964</td>
</tr>
</tbody>
</table>

*교신저자: 김영종(kkasi@hje.ac.kr)
접수일: 09년 03월 31일 수정일: 09년 04월 20일 게재확정일: 09년 04월 22일
이러한 경향은 특정 계층이나 성별, 연령에 상관없이 국민의 대부분이 직·간접적으로 보다 많은 온라인 쇼핑을 경험하게 되고, 특히 컴퓨터나 인터넷에 취약한 노년층 조차도 구매자에 포함되므로 현재 이루어지고 있는 쇼핑 형태보다 간편하면서도 안전한 방법이 요구되어지고 있다.

현재, 이러한 새로운 구매 방법이나 형태, 특성 등에 대한 다양한 연구 또한 활발히 이루어지고 있으며, 헬드폰 등 휴대기기를 활용하여 다양한 형태의 접근 방법이 나 분석도 제시되고 있다.[2-6]

따라서, 본 논문에서는 점자에 기반한 다음적 시각 언어 시스템[7]을 활용한 한 방법으로 칼라코드를 중심으로 한 웹과 모바일 쇼핑 시스템을 설계, 제안하였다.

2. 다음적 시각 언어 시스템

다목적 시각 언어 시스템은 시각 장애가있는 점자에 그 기반을 두고 있다. 점자는 일반인들이 접근하기에는 상당한 애로 사항을 가지고 있으므로, 이를 실 생활에 응용하기도 쉽지 않은 것이 사실이다.

따라서, 이 시스템은 일반인들도 사용하기 쉽고 간단한 형태의 앱도 가능하며, 전산화하기에도 편리한 여러 가지 형태로 확장가능하다.

물론, 현재도 널리 사용되어지고 있는 바코드나 기타 다른 형태의 코드들과 유사한 점을 가지고는 있지만, 기존의 코드들에 비하여 보다 구현하기 쉽고, 특히 그 활용도가 높다고 할 수 있다.

2.1 시각 언어 시스템

이 시스템은 격자 형태로 구성되며, 하나의 격자 안에는 문자나 숫자, 도형, 색상 등으로 값을 표현하여 전체 문장이나 단어를 표현하게 된다.

예를 들어, 시각 언어로 “I Love You”라는 단어를 표현하자고 하면, 그림 2와 같이 나타낼 수 있다.

![그림 2] 시각 언어 표현의 예

2.2 칼라 코드의 색상 제한

시각 언어 시스템으로 표현할 수 있는 방법은 다양하지만 본 논문에서는 색상을 이용하여 이를 표현하였다.

이 이유는 웹과 모바일 쇼핑 시스템을 이루기 위해서는 사용자가 원하는 정보를 표시하는 메개체로 주로 TV 방송을 활용하기 때문에 일반적인 숫자나 문자가 화면의 일부분에 나오는 것이 보다는 가독성이 있고 표현성 또한 웹과 모바일 쇼핑 시스템에서 중요하다고 판단되어하였다.

다목적 시각 언어에 색상 정보를 적용시키기 위해서는 첫째, 사람이 쉽게 범할 수 있는 색상의 수, 둘째, CRT, PDP, LCD, 프로젝션 등 여러 디스플레이 형태를 가지고 있는 현 시점의 TV 수상기에서의 색상 표현 능력, 셋째, 헬드폰에 탑재되어 있는 카메라의 해상도와 같은 항목을 고려하여 색상의 수를 제한하여야 한다.

2.3 칼라 코드

위와 같은 제약 조건을 충족하면서도 원하는 정보를 전달하기 위해서 전체 색상의 수는 32가지로 정하였다.

이 중, 화색과 검정색은 각각 시각과 골을 표시하는 동 시에 코드 각 자체도 표현할 수 있도록 배치하였으며, 나머지 30가지의 색상은 사람의 눈 보다는 카메라가 인식하기 쉬운 것으로 정하였다.

이는 실제 사람이 색상을 보고서 값을 판단하기 보다는 헬드폰에 장착된 카메라에 의해 프로그램이 자동으로 코드를 인식하게 하기 위함이다.

표에 표시한 각 색상에 대한 칼라 코드 배치에 따라 실제 칼라 코드를 구성하면 그림 3과 같이 표현할 수 있다.

![표 2] 칼라 코드 정의

<table>
<thead>
<tr>
<th>코드번호</th>
<th>색상명</th>
<th>코드 의미</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF</td>
<td>black</td>
<td>제어 코드(마지막)</td>
</tr>
<tr>
<td>0x00</td>
<td>white</td>
<td>제어 코드(시작, 보정)</td>
</tr>
<tr>
<td>0x01</td>
<td></td>
<td>실제 코드</td>
</tr>
<tr>
<td>0x1E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
발송 형태에 따라 다소 달라질 수도 있음을 것이다.

3.1.1 방송국 노드

방송국에서는 그림 5에 나타낸 프로토콜에 따라, 사전에 할라 코드를 병행하여 방송할 프로그램에 대한 정보를 확인하여 방송 전파를 전송하게 되는데, 만약, 난이 코드를 검여있을 필요가 없는 방송이라면 할라 코드 부분을 제외하고 일반적인 경우처럼 방송을 보내내면 된다.

3.1.2 사용자 노드

사용자는 일반적인 TV 화면을 시청하더라도 해당 방송에 나타난 물건을 구매하고 싶다는 판단이 서면 그림 6과 같이 헬드폰에 탑재된 할라 코드 프로그램을 구동하여 방송을 받는다.

먼저, 사용자에게 정보를 전달하기 위해 방송 화면의 일부분에 할라코드를 적용한 화면을 방송해야 하는데, 일반적인 방송화면을 고려한다면 화면의 오른쪽 왼쪽부분이 가장 수월할 것이다.

물론, 그 위치는 공중파, 게이블, 홈쇼핑, DMB 등의 방송을 통해 할라 코드의 정보를 전달할 수 있기 때문에.
이 때, 시간 정보는 같은 방송 프로그램상의 카드 코드가 전달되더라도, 시간에 따라 드라마 주인공이 입고 있는 옷이나 주변의 가구가 화면상에 확실하게 나타내어지므로, 비교적 짧은 코드로도 보다 다양한 상품에 대한 선택을 할 수 있게 함과 동시에 정확한 사용자의 선택을 도와 주게 되는 가장 중요한 요소로서 작용한다.

메시지를 전달받은 서버는 데이터베이스에 업데이트 되어 있는 쇼핑 리스트를 참조하여 사용자에게 해당 상품 목록을 핸드폰 통신을 통하여 보여주게 된다.

핸드폰 화면에 상품 리스트가 나타나면 사용자는 원하는 상품을 선택하여 모든 구매를 마치게 된다.

3.1.3 이동통신 기지국 노드

이동통신 기지국은 일반적인 통신 서비스를 수행하도, 카드코드가 포함되어 있는 메시지가 전달되었을 경우, 원스텝 모바일 쇼핑 서버에 사용자의 핸드폰 번호, 카드 코드, 현재 시간, 사용자 위치 등의 정보를 전달하고 다시 일반적인 상태로 되돌아간다.

그림 7에 이동통신 기지국 노드에 대한 프로토콜을 나타내었다.

[그림 7] 이동통신 기지국 노드에 대한 프로토콜

3.1.4 원스텝 모바일 쇼핑 서버 노드

서버 노드에서는 그림 8에 나타낸 프로토콜에 따라 이동통신 기지국으로부터의 호출이 발생할 경우, 전달 받은 카드 코드와 시간 정보를 바탕으로 데이터베이스를 검색하여 해당 상품에 대한 쇼핑 리스트를 사용자의 핸드폰에 전달한다.

[그림 8] 서버 노드에 대한 프로토콜

이후, 사용자로부터 구매 결정이 내려지게 되면, 핸드폰 번호를 기반으로 해당 쇼핑몰의 상품 목록이 있는 사용자 ID, 핸드폰 번호, 최초 요청 시간, 사용자 위치, 상품 코드 등을 전송하게 된다.

사용자의 위치는 차후 배송되어 집 상품의 배송지로 사용자에게 핸드폰을 가지고 있는 위치 또는 미리 등록된 배송지 중에서 선택할 수 있도록 메력하기 위한 것이다.

또한, 원스텝 모바일 쇼핑 서버는 대념적으로 트레픽 발생이 적거나 약간된 일정 시간에 쇼핑몰 서버로부터 새로운 쇼핑 리스트를 전달받아 업데이트를 실시한다.

[표 3] 페코드 필드 정의

<table>
<thead>
<tr>
<th>필드명</th>
<th>필드 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPNO</td>
<td>사용자 핸드폰 번호</td>
</tr>
<tr>
<td>CCODE</td>
<td>카드 코드</td>
</tr>
<tr>
<td>CTIME</td>
<td>사용자 최초 요청 시간</td>
</tr>
<tr>
<td>CPSO</td>
<td>사용자 위치</td>
</tr>
<tr>
<td>BTIME</td>
<td>기지국 전송 시간</td>
</tr>
<tr>
<td>SMIME</td>
<td>쇼핑몰 전송 시간</td>
</tr>
<tr>
<td>CSMID</td>
<td>사용자 쇼핑몰 ID</td>
</tr>
<tr>
<td>CBTIME</td>
<td>사용자 구매 요청 시간</td>
</tr>
<tr>
<td>MNAME</td>
<td>매체명</td>
</tr>
<tr>
<td>PNAME</td>
<td>상품코드</td>
</tr>
<tr>
<td>PNAME</td>
<td>상품명</td>
</tr>
<tr>
<td>PPRICE</td>
<td>상품가격</td>
</tr>
<tr>
<td>CONT</td>
<td>상품 세부정보</td>
</tr>
<tr>
<td>VCNT</td>
<td>일일 누적 조회 횟수</td>
</tr>
<tr>
<td>BCNT</td>
<td>일일 누적 구매 횟수</td>
</tr>
<tr>
<td>EXF</td>
<td>멀비 필드</td>
</tr>
</tbody>
</table>

762
표 3에 나타난 것은 웹스템 모바일 쇼핑 서버 상에 존재하는 데이터베이스 레코드에 대한 필드 값을 의미한다.

3.2 시스템 구현 접근

이상과 같은 시스템을 정리하여 도식화하면 그림 9와 같이 표현할 수 있다.

[그림 9] 웹스템 모바일 쇼핑 시스템

또한, 흉소행에 본 시스템을 적용하여 표현하면 그림 10에 표시한 것과 같은데, 실제 사용자는 그림 11과 같이 화면 전체나 칼라 코드 부분, 또는 칼라 코드가 포함된 화면의 일부분을 핸드폰에 탐색된 캐레라를 이용하여 촬영하게 된다.

[그림 10] TV 흉소행에 적용한 코드의 예

4. 결론

본 논문에서는 다목적 시각 언어 시스템에 색상 정보를 착용한 칼라 코드를 기반으로 보다 쉽고 빠르면서도 비교적 안전한 웹스템 모바일 쇼핑 시스템을 설계하였다.

이 시스템은 폭발적으로 증가하고 있는 온라인 쇼핑 시장에 보다 쉽게 접근할 수 있고, 단순히 핸드폰에 탐색된 카메라로 코드를 촬영하는 것으로 원하는 쇼핑을 할 수 있다. 따라서, 기존의 휴대용 장치 사용에 익숙하지 않은 노인층을 포함한 대부분 사용자의 접근이 용이한 장점을 가지고 있다.

또한, 기존의 방송 매체나 차후 발전할 형태의 정보 전달 매체에도 쉽게 적용할 수 있어서, 제품의 판매자, 정보 전달자, 구매자 모두에게 이득이 될 수 있는 시스템이라고 하겠다.

참고문헌

김 영 종(Young-Jong Kim) [정회원]

- 1994년 2월 : 인하대학교 대학원 전자계산공학과(공학석사)
- 1995년 9월 ~ 현재 : 해천대학교 디지털서비스과 부교수

<관심분야>
정보통신, 정보경영