The Mitochondrial Warburg Effect: A Cancer Enigma

  • Kim, Hans H. (Department of Chemistry, University of Pennsylvania) ;
  • Joo, Hyun (Department of Physiology and Integrated Biosystems, College of Medicine, Inje University) ;
  • Kim, Tae-Ho (Systems Immunology Laboratory, WPI Immunology Frontier Research Center, Osaka University) ;
  • Kim, Eui-Yong (Department of Physiology and Integrated Biosystems, College of Medicine, Inje University) ;
  • Park, Seok-Ju (Department of Internal Medicine, College of Medicine, Inje University and Busan Paik Hospital Organ Transplantation Center) ;
  • Park, Ji-Kyoung (Department of Pediatric Hematology-Oncology, College of Medicine, Inje University and Busan Paik Hospital) ;
  • Kim, Han-Jip (Department of Life Sciences, Ajou University)
  • Published : 2009.06.30


"To be, or not to be?" This question is not only Hamlet's agony but also the dilemma of mitochondria in a cancer cell. Cancer cells have a high glycolysis rate even in the presence of oxygen. This feature of cancer cells is known as the Warburg effect, named for the first scientist to observe it, Otto Warburg, who assumed that because of mitochondrial malfunction, cancer cells had to depend on anaerobic glycolysis to generate ATP. It was demonstrated, however, that cancer cells with intact mitochondria also showed evidence of the Warburg effect. Thus, an alternative explanation was proposed: the Warburg effect helps cancer cells harness additional ATP to meet the high energy demand required for their extraordinary growth while providing a basic building block of metabolites for their proliferation. A third view suggests that the Warburg effect is a defense mechanism, protecting cancer cells from the higher than usual oxidative environment in which they survive. Interestingly, the latter view does not conflict with the high-energy production view, as increased glucose metabolism enables cancer cells to produce larger amounts of both antioxidants to fight oxidative stress and ATP and metabolites for growth. The combination of these two different hypotheses may explain the Warburg effect, but critical questions at the mechanistic level remain to be explored. Cancer shows complex and multi-faceted behaviors. Previously, there has been no overall plan or systematic approach to integrate and interpret the complex signaling in cancer cells. A new paradigm of collaboration and a well-designed systemic approach will supply answers to fill the gaps in current cancer knowledge and will accelerate the discovery of the connections behind the Warburg mystery. An integrated understanding of cancer complexity and tumorigenesis is necessary to expand the frontiers of cancer cell biology.


  1. Ahmad I., Aykin-Burns N., Sim J., Walsh S., Higashikubo R., Buettner G., Venkataraman S., Mackey M., Flanagan S., Oberley L, and Spitz D. (2005). Mitochondrial O2•- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J. Biol. Chem. 280, 4254-4263
  2. Bartrons R. and Caro J. (2007). Hypoxia, glucose metabolism and the Warburg's effect. J. Bioenerg. Biomembr. 39, 223-229
  3. Bernstein H., Holubec H., Warneke J.A., Garewal H., Earnest D.L., Payne C.M., Roe D.J., Cui H., Jacobson E.L. and Bernstein C. (2002). Patchy field defects of apoptosis resistance and dedifferentiation in flat mucosa of colon resections from colon cancer patients. Ann. Surg. Oncol. 9, 505-517
  4. Bonnet S., Archer S.L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., Lee C.T., Lopaschuk G.D., Puttagunta L., Bonnet S., Harry G., Hashimoto K., Porter C.J., Andrade M.A., Thebaud B. and Michelakis E.D. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37-51
  5. Boros G., Puigjaner J., Cascante M., Lee W., Brandes L., Bassilian S., Yusuf I., Williams D., Muscarella P., Melvin S. and Schirmer J. (1997). Oxythiamine and Dehydroepiandrosterone Inhibit the Nonoxidative Synthesis of Ribose and Tumor Cell Proliferation. Cancer Research 57, 4242-4248
  6. Chen Z., Lu W., Garcia-Prieto C. and Huang P. (2007). The Warburg effect and its cancer therapeutic implications. J. Bioenerg. Biomembr. 39, 267–274
  7. Chung M. (2006). Proteomics in Cancer Biomarker Discovery, PharmaAsia. micsincancerbiomarkerdiscovery-asia.html
  8. Coller H.A., Khrapko K., Bodyak N.D., Nekhaeva E., Herrero-Jimenez P., and Thilly W.G. (2001). High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat. Genet. 28, 104-105
  9. DeBerardinis R., Sayed N., Ditsworth D. and Thompson C. (2008). Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54-61
  10. Fliss M.S., Usadel H., Caballero O.L., Wu L., Buta M.R., Eleff S.M., Jen J. and Sidransky D. (2008). Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287, 2017-2019
  11. Gabaldon T. and Huynen M.A. (2004). Shaping the mitochondrial proteome. Biochim. Biophys. Acta 1659, 212-220
  12. Gatenby R. and Gillies R. (2004). Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891-899
  13. Hsu P.P. and Sabatini D.M. (2008). Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707
  14. Kim T., Kim E., Park S.-J. and Joo H. (2009). PCHM: A bioinformatic resource for high-throughput human mitochondrial proteome searching and comparison. Comp. Biol. Med. doi:10.1016/j.compbiomed.2009.05.006
  15. Klein A, Chan A.W., Caplan B.U. and Malin A. (1990). NADP+ reduction by human lymphocytes. Clin. Exp. Immunol. 82, 170-173
  16. Kondoh H. (2008). Cellular life span and the Warburg effect. Exp. Cell Res. 314, 1923-1928
  17. Kondoh H., Lleonart M., Bernard D. and Gil J, (2007). Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization. Histol. Histopathol. 22, 85-90
  18. Kulawiec M., Arnouk H., Desouki M.M., Kazim L., Still I. and Singh K.K. (2006). Proteomic analysis of mitochondria-to-nucleus retrograde response in human cancer. Cancer Biol. Ther. 5, 967-975
  19. Langbein S., Zerilli M., Zur A., Staiger W., Rensch-Boschert K., Lukan N., Popa J., Ternullo P., Weiss C., Grobholz R., Willeke F., Alken P., Stassi G., Schubert P. and Coy J. (2006). Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br. J. Cancer 94, 578-585
  20. Mandal S. and Davie J.R. (2007). An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells. BMC Cancer 7, 181
  21. Mayevsky A. (2009). Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives. Mitochondrion 9, 165-179
  22. Nath K., Ngo E., Hebbel R., Croatt A., Zhou B. and Nutter L. (1995). Alpha-ketoacids scavenge H2O2 in vitro and in vivo reduce menadione-induced DNA injury and cytotoxicity. Am. J. Physiol. 268, C227-C236
  23. Orrenius S. (2007). Reactive oxygen species in mitochondria-mediated cell death. Drug Metab. Rev. 39, 443-455
  24. Pfeiffer T., Schuster S. and Bonhoeffer S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504-507
  25. Rais B., Comin B., Puigjaner J., Brandes L., Creppy E., Saboureau D., Ennamany R., Lee N., Boros G. and Cascante M. (1999). Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich's tumor cells through inhibition of the pentose cycle. FEBS Lett. 456, 113-118
  26. Rezaul K., Wu L., Mayya V., Hwang S.I. and Han D. (2005). A systematic characterization of mitochondrial proteome from human T leukemia cells. Mol. Cell Proteomics 4, 169-181
  27. Robey I.F., Stephen R.M., Brown K.S., Baggett B.K., Gatenby R.A. and Gillies R.J. (2008). Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia 10, 745-756
  28. Samudio I., Fiegl M. and Andreeff M. (2009). Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res. 69, 2163-2166
  29. Schatz G. (1996). The protein import system of mitochondria. J. Biol. Chem. 271, 31763-31766
  30. Selak M.A., Armour S.M., MacKenzie E.D., Boulahbel H., Watson D.G., Mansfield K.D., Pan Y., Simon M.C., Thompson C.B. and Gottlieb E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77-85
  31. Simpson, R.J. and Forow, D.S. (2001). Cancer proteomics: from signaling networks to tumor markers. Trends Biotechnol. 19, S40-S48
  32. Spitz D., Sim J., Ridnour A., Galoforo S., and Lee Y. (2000). Glucose deprivation-induced oxidative stress in human tumor cells. Ann. N.Y. Acad. Sci. 899, 349-362
  33. Szkanderova S., Vávrová J., Hernychová L., Neubauerová V., Lenco J. and Stulík J. (2005). Proteome alterations in gamma-irradiated human T-lymphocyte leukemia cells. Radiat. Res. 163, 307-315
  34. Vander Heiden M.G., Cantley L.C. and Thompson C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033
  35. Verma M., Kagan J., Sidransky D. and Srivastava S. (2003). Proteomic analysis of cancer-cell mitochondria. Nat. Rev. Cancer 3, 789-795
  36. Warburg O. and Negelein E. (1924). Ueber den stoffwechsel der tumoren. Biochemische Zeitschrift 152, 319-344
  37. Zanssen S. and Schon E.A. (2005). Mitochondrial DNA mutations in cancer. PLoS Med. 2, e401
  38. Zhang S., Yang H., Guo K. and Cai C. (2007). Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett. 253, 108-114
  39. Zhong H., De Marzo A.M., Laughner E., Lim M., Hilton D.A., Zagzag D., Buechler P., Isaacs W.B., Semenza G.L. and Simons J.W. (1999). Overexpression of hypoxia-inducible factor 1alpha incommon human cancers and their metastases. Cancer Res. 59, 5830-5835
  40. Zhou S., Kachhap S., and Singh K.K. (2003). Mitochondrial Impairment in p53-deficient human cancer cells. Mutagenesis 18, 287-292

Cited by

  1. Expression and putative role of mitochondrial transport proteins in cancer vol.1858, pp.8, 2017,
  2. The roles of macromolecules in imatinib resistance of chronic myeloid leukemia cells by Fourier transform infrared spectroscopy vol.67, pp.3, 2013,
  3. Systems-Scale Analysis Reveals Pathways Involved in Cellular Response to Methamphetamine vol.6, pp.4, 2011,