DOI QR코드

DOI QR Code

Development of a Tensile Cell Stimulator to Study the Effects of Uniaxial Tensile Stress on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

세포 인장 자극기의 개발과 세포 인장 자극을 통한 성체 줄기세포의 골분화 유도

  • Published : 2009.07.01

Abstract

Mechanical stimulation is known to play a vital role on the differentiation of mesenchymal stem cells (MSCs) to pre-osteoblasts. In this research, we developed a tensile cell stimulator, composed of a DC motor-driven actuator and LVDT sensor for measuring linear displacement, to study the effects of tensile stress on osteogenic differentiation of MSCs. First, we demonstrated the reliability of this device by showing the uniform strain field in the silicon substrate. Secondly, we investigated the effects of tensile stretching on osteogenic differentiation. We imposed a pre-set cyclic strain at a fixed frequency on cell monolayer cultured on a flexible silicon substrate while varying its amplitude and duration. 60 min of resting period was allowed between 30 min of cyclic stretching and this cycle is repeated up to 7 days. Under the combined stimulation with osteogenic media and mechanical stretching, the osteogenic markers such as alkaline phosphatase (ALP), osterix, and osteopontin began to get expressed as early as 4 days of stimulation, which is much shorter than what is typically required for osteogenic media induced differentiation. Moreover, different markers were induced at different magnitudes of the applied strains. Lastly, for the case of ALP, we observed the antagonistic effects of osteogenic media when combined with mechanical stretching.

Keywords

Osteogenic Differentiation;Mesenchymal Stem Cell;Strain Ratio;Cell Tensile Stimulation;2D Elastic Membrane;Quantitative Analysis;Osteogenic Marker

References

  1. Arnold, I. C., 2005, 'Mesenchymal Stem Cells: Cell-Based Reconstructive Therapy in Orthopedics,' Tissue Eng., Vol.11, No. 7/8, pp. 1198-1211 https://doi.org/10.1089/ten.2005.11.1198
  2. Ignatius, A., Blessing, H., Liedert, A., Schmidt, C., Neidlinger-Wilke, C., Kaspar, D., Friemert B. and Claes, L., 2005, 'Tissue Engineering of Bone: Effects of Mechanical Strain on Osteoblastic Cells in Type I Collagen Matrices,' Biomaterials, Vol. 26, No. 3, pp.311-318 https://doi.org/10.1016/j.biomaterials.2004.02.045
  3. Xiao, L., Marie, O., Wei, H. and Morris, K., 2005, 'Neural Cell Differentiation In Vitro from Adult Human Bone Marrow Mesenchymal Stem Cells,' Stem Cells Dev, Vol. 14, No. 1, pp.65-69 https://doi.org/10.1089/scd.2005.14.65
  4. Michelle, R., Kreke, M.E. and Aaron, S. G, 2004, 'Hydrodynamic Shear Stimulates Osteocalcin Expression But Not Proliferation of Bone Marrow Stromal Cells,' Tissue Eng, Vol. 10, No. 5/6, pp. 780-788 https://doi.org/10.1089/1076327041348455
  5. Heng, B. C., Cao, T. and Lee, E. H., 2004, 'Directing Stem Cell Differentiation into the Chondrogenic Lineage In Vitro,' Stem Cells, Vol. 22, pp. 1152-1167 https://doi.org/10.1634/stemcells.2004-0062
  6. Gruber, R., Graninger, W., Bobacz, K., Watzek, G., Erlacher, L, 2003, 'BMP-6-Induced Osteogenic Differentiation of Mesenchymal Cell Lines is not Modulated by Sex Steroids and Resveratrol,' Cytokine, Vol. 23, No. 4, pp. 133-137 https://doi.org/10.1016/S1043-4666(03)00223-0
  7. Jagodzinski, M., Drescher, M., Zeichen, J., Hankemeier, S., Krettek, C., Bosch, U. and Griensven, M., 2004, 'Effects Of Cyclic Longitudinal Mechanical Strain and Dexamethason on Osteogenic Differentiation of Human Bone,' Eur Cell Mater, Vol. 7, pp. 35-41 https://doi.org/10.22203/eCM.v007a04
  8. Lee, E. K., Lee, J. S., Park, H. S., Kim, C. H, Gin, Y. J. and Son Y. S., 2005, 'Cyclic Stretch Stimulates Cell Proliferation of Human Mesenchymal Stem Cells but Do Not Induce Their Apoptosis and Differentiation,' Tissue Eng Reg Med, Vol. 2, No. 1, pp. 29-33
  9. Koike, M., Shimokawa, H., Keiichi K., Ohya, Z. K. and Kunimichi S., 2005, 'Effects of Mechanical Strain on Proliferation and Differentiation of Bone Marrow Stromal Cell Line ST2,' J Bone Miner Metab, Vol. 23, N0. 3, pp. 219-225 https://doi.org/10.1007/s00774-004-0587-y
  10. Robling, A. G.,Castillo A. B., and Turner C. H., 2006, 'Biomechanical and Molecular Regulation of Bone Remodeling,' Annu Rev Biomed Eng, Vol.8, pp.455-498 https://doi.org/10.1146/annurev.bioeng.8.061505.095721
  11. Altman, G., Horan, R., Martin, I., Farhadi, J., Srark, P., Volloch, V., Vunjak-novakovic, G., Richmond, J., Kaplan, D., L., 2002, 'Cell Differentiation by Mechanical Stress,' FASEB, Vol. 16, pp. 270-272
  12. Matsumoto, T., Delafontaine, P., Schnetzer, K.J., Tong, B.C., Nerem, R.M., 1996, 'Effect of Uniaxial, Cyclic Stretch on the Morphology of Monocytes/ Macrophages in Culture.' J Biomech Eng, Vol. 118, No. 3, pp.420-422 https://doi.org/10.1115/1.2796026
  13. Ives, C. L., Skin, S. G. and McIntire, L. V., 1986, 'Mechanical Effects on Endothelial Cell Morphology: in vitro Assessment.' In Vitro Cell Dev Biol, Vol. 22, No. 9, pp. 500-507 https://doi.org/10.1007/BF02621134
  14. Clark, C. B., Burkholder, T. J. and Frangos, J. A., 2001, 'Uniaxial Strain System to Investigate Strain Rate Regulation in Vitro.,' Rev Sci Instr, Vol. ;72, No. 5, pp. 2415-2422 https://doi.org/10.1063/1.1362440
  15. Matheson, L. A., Fairbank N. J., Maksym, G. N., J. Paul, Santerre and Labow R. S., 2006, 'Characterization of the $Flexcell^{TM} Uniflex^{TM}$ Cyclic Strain Culture System with U937 Macrophage-like Cells,' Biomatrial, Vol. 27, No. 2, pp. 226-233 https://doi.org/10.1016/j.biomaterials.2005.05.070
  16. Burr, D.B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, M., Finestone, A., Hoshaw, S., Saiag, E., Simkin, A., 1996, 'In Vivo Measurement of Human Tibial Strains During Vigorous Activity,' Bone, Vol. 18, No. 5, pp.405-410 https://doi.org/10.1016/8756-3282(96)00028-2
  17. Frank, O., Heim, M., Jakob, M., Barbero, A., Schafer, D., Bendik, I., Dick W., Heberer, M, Martin, I., 2002, 'Real-Time Quantitative RT-PCR Analysis of Human Bone Marrow Stromal Cells During Osteogenic Differentiation in Vitro,' J Cell Biochem., Vol. 85, pp. 737-746 https://doi.org/10.1002/jcb.10174
  18. Bruder, S. P., Horowitz, M. C., Mosca, J. D., Hayneworth, S. E., 1997, 'Monoclonal Antibodies Reactive with Human Osteogenic Cell Surface Antigens,' Bone, Vol. 21, No. 3, pp.225-235 https://doi.org/10.1016/S8756-3282(97)00127-0
  19. Mauney, J. R., Sjostorm, S., Blumberg, J., Horan, R., O'Leary, J. P., Vunjak-Novakovic. G., Volloch, V. and Kaplan, D. L., 2004, 'Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds In Vitro,' Calcif Tissue Int, Vol.74, No. 5, pp.458-468 https://doi.org/10.1007/s00223-003-0104-7
  20. Byers, R.J., Brown, J., Brandwood, C., Wood, P., Staley, W., Hainey, L., Freemont, A.J. and Hoyland, J.A., 1999, 'Osteoblastic Differentiation and mRNA Analysis of STRO-1-Positive Human Bone Marrow Stromal Cells Using Primary in Vitro Culture and Poly (A) PCR.,' J Pathol, Vol. 187, No. 3, pp. 374-381 https://doi.org/10.1002/(SICI)1096-9896(199902)187:3<374::AID-PATH257>3.0.CO;2-V
  21. Leung, D.Y., Glagov, S. and Mathews, M.B., 1977, 'A New in vitro System for Studying Cell Response to Mechanical Stimulation. Different Effects of Cyclic Stretching and Agitation on Smooth Muscle Cell Biosynthesis,' Exp Cell Res, Vol. 109, No. 2, pp. 285-298 https://doi.org/10.1016/0014-4827(77)90008-8
  22. Berry, C. C, Shelton, J. C., Bader, D.L. and Lee, D.A., 2003, 'Influence of External Uniaxial Cyclic Strain on Oriented Fibroblast-Seeded Collagen Gels.,' Tissue Eng, Vol. 9, No. 4, pp. 613-624 https://doi.org/10.1089/107632703768247313
  23. Armbruster, C., Schneider, M., Gamerdinger, K., Schumann, S., Cuevas, M., Koch, E., Guttmann, J., 2008, 'Fabrication of thin and Flexible PDMS Membranes for Biomechanical Test Applications,' IFMBE Proceedings, Vol. 22, pp. 2007-2010 https://doi.org/10.1007/978-3-540-89208-3_478

Cited by

  1. Mechano-regulation theory-based finite element analysis on the effects of driving strain history on cellular differentiation vol.16, pp.8, 2015, https://doi.org/10.1007/s12541-015-0241-8